IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> Прошу помощи с задачкой
Lesha
сообщение 24.1.2010, 1:54
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



Студент из 90 вопросов программы выучил 80. В билете три вопроса. Какова вероятность того, что ему достанется билет, в котором он не знает хотя бы один вопрос?
Знакомый один - типа помог - решил её так
Всего возможно вариантов N=C_90^3
Нас интересует вариант, когда Он выбирает билет, где он не знает ни одного вопроса. Количество комбинаций n=C_10^3 .
Тогда искомая вероятность ρ=(C_10^3)/(C_90^3 )=(10!∙87!∙3!)/(7!∙3!∙90!)=(8∙9∙10)/(88∙89∙90)=1/(11∙89)=1/979

Мне показалось что слишком уж маленькая вероятность получается... видимо тут сделано для варианта что в билете все 3 вопроса будут невыученными.
Пошарил весь день и вот пол ночи в инете - и по примеру одной задачки решил вот как
Решение.
Введём обозначения: событие А – студент не знает один из трёх вопросов;
событие Вi – студент знает i-й попавшийся ему вопрос (i = 1, 2, 3).
Тогда событие А можно представить так:
А=¯(В_1 ) В_2 В_3+В_1 ¯(В_2 ) В_3+В_1 В_2 ¯(В_3 )
При нахождении вероятности события А учтём, что слагаемые – несовместные события.
10/90∙80/89∙79/88+80/90∙10/89∙79/88+80/90∙79/89∙10/88=3∙790/(89∙99)≈0,2689


Подскажите какой вариант правильный или скажите как решать задачку ато умру над ней блин (IMG:style_emoticons/default/sad.gif) да.. и вероятность того что хотябы одно решение будет правильным тож оч мала..

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
malkolm
сообщение 24.1.2010, 4:35
Сообщение #2


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



Ни один. Первая вероятность - того, что все три вопроса студент не знает, вторая - что ровно один вопрос студент не знает. А нужна вероятность, что хотя бы один вопрос студент не знает. Хотя бы один - это либо один, либо два, либо все три. Вот с учётом этого и исправьте своё решение. Можно также найти сначала вероятность противоположного события и отнять её от единицы. Какое событие противоположно к искомому?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
venja
сообщение 24.1.2010, 6:52
Сообщение #3


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Давноубедился в том, что многие студенты не отличают "хотя бы один" от " в точности один".
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Lesha
сообщение 24.1.2010, 11:18
Сообщение #4


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



Цитата
Какое событие противоположно к искомому?

Ну получается что противоположное искомому это вероятность того что хотя бы один ответ попадется выученным. И искать ее точно также как и искомую.. ток как.. Помогите пожалуйста
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
malkolm
сообщение 24.1.2010, 11:40
Сообщение #5


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



Вы вытащили из кармана соседа три банкноты. Событие, которое Вам нужно - что среди них есть хотя бы одна стодолларовая банкнота. Какое событие противоположно к этому?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Lesha
сообщение 24.1.2010, 11:53
Сообщение #6


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



что среди них нет стодолларовой банкноты?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
malkolm
сообщение 24.1.2010, 14:10
Сообщение #7


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



Верно (IMG:style_emoticons/default/wink.gif)
А теперь вернитесь к своей задаче, опишите противоположное событие и найдите его вероятность.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Lesha
сообщение 24.1.2010, 15:38
Сообщение #8


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



Итак... вернулся я к задаче. Вот что у меня получилось.

Студент из 90 вопросов программы выучил 80. В билете три вопроса. Какова вероятность того, что ему достанется билет, в котором он не знает хотя бы один вопрос?

Решение.
Всего возможно вариантов N=C_90^3
Введём обозначения: событие А – достался билет, в котором студент не знает хотя бы один вопрос
событие В – достался билет, в котором студент знает все вопросы
Находим вероятность события В
Количество комбинаций n=C_80^3 .
Р(В)=(C_80^3)/(C_90^3 )=(80!∙87!∙3!)/(77!∙3!∙90!)=(78∙79∙80)/(88∙89∙90)=
=(26∙79)/(33∙89)=2054/2937≈0,699
Вероятность события А будет равна:
Р(А)=1-Р(В)=1-2054/2937=883/2937≈0,301

Скажите пожалуйста правильное ли это решение или опять чето не то намутил? (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
malkolm
сообщение 24.1.2010, 15:58
Сообщение #9


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



Правильное.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Lesha
сообщение 24.1.2010, 16:00
Сообщение #10


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



большое спасибо (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Juliya
сообщение 24.1.2010, 20:05
Сообщение #11


Старший преподаватель
*****

Группа: Активисты
Сообщений: 1 197
Регистрация: 4.11.2008
Город: Москва
Вы: преподаватель



а по моему опыту лучше всего студенты начинают понимать задачу после вот таких денежных примеров (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Lesha
сообщение 24.1.2010, 20:27
Сообщение #12


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 24.1.2010
Город: Хмельницкий, Украина



Товарищи проффесионалы (IMG:style_emoticons/default/smile.gif) подскажите мне пожалуйста только вот такой момент:
как из вот этого вот (80!∙87!∙3!)/(77!∙3!∙90!) получилось вот это (78∙79∙80)/(88∙89∙90)
ато я взял по аналогии с первого решения (не моего) - проверил маткадом что сходится и написал аналогично. А вдруг спросят как это так получилось... Незнаю блин (IMG:style_emoticons/default/smile.gif) Есть какаято формула?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 24.1.2010, 20:41
Сообщение #13


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Lesha @ 24.1.2010, 22:27) *

Товарищи проффесионалы (IMG:style_emoticons/default/smile.gif) подскажите мне пожалуйста только вот такой момент:
как из вот этого вот (80!∙87!∙3!)/(77!∙3!∙90!) получилось вот это (78∙79∙80)/(88∙89∙90)

80!=1*2*...*77*78*79*80=(1*2*...*77)*78*79*80=77!*78*79*80.
Все остальное по аналогии и что можно сокращается.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Juliya
сообщение 24.1.2010, 22:04
Сообщение #14


Старший преподаватель
*****

Группа: Активисты
Сообщений: 1 197
Регистрация: 4.11.2008
Город: Москва
Вы: преподаватель



формулы числа сочетаний (биномиальных коэффициентов) и факториалов (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 15:33

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru