IPB

Здравствуйте, гость ( Вход | Регистрация )

> Нетривиальная задача ближе к комбинаторике
Citizen
сообщение 16.6.2009, 8:07
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 6
Регистрация: 16.6.2009
Город: Дмитров



Есть два множества. В первом К1 элементов (все различные), во втором - К2 (и тут тоже все различны). Пересечение этих множеств непусто и его мощность равняется Х элементов. Из первого множества наугад тянут n элементов. Из второго наугад тянут m элементов. Какова вероятность того, что среди вытянутых элементов k совпадут?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
malkolm
сообщение 19.6.2009, 13:19
Сообщение #2


Старший преподаватель
*****

Группа: Преподаватели
Сообщений: 2 167
Регистрация: 14.6.2008
Город: Н-ск
Вы: преподаватель



Это более простая задача. Средние вообще считаются легче, чем распределения. Оценка метода моментов для Х пойдёт?

Пусть все элементы пронумерованы, в первом множестве шарики с номерами 1,...,K1-X,K1-X+1,...,K1, во втором - шарики с номерами K1-X+1,...,K1, K1+1,...,K1-X+K2. Здесь жирным выделены шары в количестве Х штук, общие для двух множеств.
И есть первый набор - X1,...,Xn со значениями 1,...,K1, и второй набор - Y1,...,Ym со значениями K1-X+1,...,K1-X+K2.

Найдём математическое ожидание числа совпадений Xi с Yj: величина I(Xi = Yj) принимает значения 1 или 0 в зависимости от того, случилось совпадение или нет, и имеет распределение Бернулли с параметром p=P(Xi = Yj)=P(X1=Y1)=P(X1=K1-X+1, Y1=K1-X+1)+...+P(X1=K1,Y1=K1) = X*1/K1*1/K2 = X/(K1*K2).

Тогда матожидание числа совпадений есть
E(sum[i,j] I(Xi = Yj)) = sum[i,j] E I(Xi = Yj) = sum[i,j] P(Xi = Yj) = n*m*X/(K1*K2).

Поэтому оценку метода моментов Х' для Х ищем, приравнивая полученное число совпадений k к его среднему: k=n*m*X'/(K1*K2), X' = k*K1*K2 / nm.

Это состоятельная, несмещённая, асимптотически нормальная оценка.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 14:35

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru