IPB

Здравствуйте, гость ( Вход | Регистрация )

> Урна содержит M занумерованных шаров, Задачка
wsnet
сообщение 12.3.2007, 10:13
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 9
Регистрация: 2.3.2007
Город: 1
Учебное заведение: УПИ
Вы: студент



Урна содержит M занумерованных шаров с номерами от 1 до M. Шары извлекаются по одному без возвращения. Рассматриваются следующие события:
A – номера шаров в порядке поступления образуют последовательность 1, 2, …, M;
B – хотя бы один раз совпадает номер шара и порядковый номер извлечения;
C – нет ни одного совпадения номера шара и порядкового номера извлечения.
Определить вероятности событии A, B, C. Найти предельные значения вероятностей при .
M=3

Хотябы подскажите как к ней подобраться
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
A_nn
сообщение 12.3.2007, 10:28
Сообщение #2


Ассистент
****

Группа: Преподаватели
Сообщений: 720
Регистрация: 26.2.2007
Город: СПб
Вы: преподаватель



Вероятность того, что первый шар будет с номером 1 - 1/M, второй с номером 2 - 1/(M-1). И т.д. А потом их всех перемножаете.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
wsnet
сообщение 12.3.2007, 11:49
Сообщение #3


Новичок
*

Группа: Продвинутые
Сообщений: 9
Регистрация: 2.3.2007
Город: 1
Учебное заведение: УПИ
Вы: студент



Цитата(A_nn @ 12.3.2007, 15:28) *

Вероятность того, что первый шар будет с номером 1 - 1/M, второй с номером 2 - 1/(M-1). И т.д. А потом их всех перемножаете.

Боьшое спасибо. Я так и подумал. Но в последний момент засомневался.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 12:47

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru