IPB

Здравствуйте, гость ( Вход | Регистрация )

> Определение критерия Пирсона, Расчет теоретических частот нормального распределения для нахождения к
h7net
сообщение 16.4.2009, 12:09
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 16.4.2009
Город: Ростов-на-Дону
Вы: другое



Добрый день, есть промоделированные результаты выполнения некой функции. В результате 1000 итераций получена выборка. Предлоложительно выборка подчиняется нормальному закону распределения, разумеется это надо доказать. Проштудировав набор литературы я выяснил, что для этого нужно расчитать критерий хи квадрат(критерий Пирсона). Для подсчета критерия мне нужны эмпирические частоты выборки и теоретические частоты выборки. Если с первыми все понятно, то про то, как найти вторые я понятия не имею(везде есть формулы, но примеры я нашел только для равномерного распределения). Почитал вот тут http://www.prepody.ru/topic4146.html про подобную задачу, но совершенно не понял как в данном примере нашли показатели теоретической частоты.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
Juliya
сообщение 5.5.2009, 13:37
Сообщение #2


Старший преподаватель
*****

Группа: Активисты
Сообщений: 1 197
Регистрация: 4.11.2008
Город: Москва
Вы: преподаватель



Формула, Вами приведенная похожа на формулу функции распределения... Функция распределения показывает вероятность, что случайная величина не превысит значения х.
но вот дальше для меня не меньший, а даже больший туман, чем для Вас - это уже какая-то специфика идет... Надо все-таки попытать Вашего руководителя.. могу только предположить, что :
F0 - функция Лапласа, (T-Mt)/t - что-то типа нормировки, т.к. Mt представляет по приведенной вами формуле некое похожее на среднее время значение: (tmin+4*tвер+tmax)/6.
а эта величина по идее показывает, насколько отклоняется от него Т...
по вашим объяснениям, к сожалению, больше не могу понять..(IMG:style_emoticons/default/sad.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 26.5.2025, 3:59

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru