IPB

Здравствуйте, гость ( Вход | Регистрация )

> найти приближенное значение
goofy6
сообщение 26.2.2009, 10:16
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 75
Регистрация: 25.2.2009
Город: Владимир
Вы: студент



Дана функция z=x^2+xy+y^2 и две точки А(1,2) и В(1,02;1,96)
1)вычислить значение функции в точке В
2)Найти приближенное значение z1 функции в точке В, исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А в точку В дифференциалом, и оценить в процентах относительную погрешность , возникающую при замене приращения функции ее дифференциалом

подскажите как сделать эти 2 пункта, особенно второй меня пугает Т_Т
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов(1 - 3)
tig81
сообщение 26.2.2009, 10:56
Сообщение #2


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Посмотрите здесь пример 8.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
goofy6
сообщение 26.2.2009, 15:15
Сообщение #3


Студент
**

Группа: Продвинутые
Сообщений: 75
Регистрация: 25.2.2009
Город: Владимир
Вы: студент



спасибо большое)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 26.2.2009, 15:19
Сообщение #4


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Пожалуйста!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
2 чел. читают эту тему (гостей: 2, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 20:19

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru