IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> Нормаль к поверхности
Stensen
сообщение 8.2.2009, 23:30
Сообщение #1


Студент
**

Группа: Продвинутые
Сообщений: 224
Регистрация: 6.11.2008
Город: Moscow
Учебное заведение: МГУ



Уважаемые,подскажите,плз, как написать уравнение нормали к поверхности: z=sqrt(x^2+y^2) в т. (x,y) не равной (0.0). А лучше общий принцип нахождения нормали. Или подскажите лит-ру где се прописано.
Всем зарании спасиб.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 9.2.2009, 6:40
Сообщение #2


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Stensen @ 9.2.2009, 1:30) *

Или подскажите лит-ру где се прописано.

А поиск ничего не дал?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Stensen
сообщение 9.2.2009, 8:25
Сообщение #3


Студент
**

Группа: Продвинутые
Сообщений: 224
Регистрация: 6.11.2008
Город: Moscow
Учебное заведение: МГУ



Ваш ответ оказался лучше поиска. Сразу как-то нашлось в гугле.Спасиб.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 9.2.2009, 17:38
Сообщение #4


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Stensen @ 9.2.2009, 10:25) *

Ваш ответ оказался лучше поиска. Сразу как-то нашлось в гугле.Спасиб.

(IMG:style_emoticons/default/megalol.gif) Да всегда пожалуйста!
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Phrep
сообщение 11.2.2009, 10:00
Сообщение #5


Студент
**

Группа: Продвинутые
Сообщений: 84
Регистрация: 14.6.2008
Город: Москва
Учебное заведение: МФТИ
Вы: преподаватель



Цитата(Stensen @ 9.2.2009, 2:30) *
А лучше общий принцип нахождения нормали.
Градиент функции f(x,y,z) перпендикулярен её поверхности уровня f(x,y,z)=C.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 21:38

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru