IPB

Здравствуйте, гость ( Вход | Регистрация )

> материалы(учебники,лекции), нужен материал с примерами решений
Светлана Потёмкина
сообщение 4.1.2009, 18:51
Сообщение #1


Новичок
*

Группа: Продвинутые
Сообщений: 5
Регистрация: 4.1.2009
Город: Украина, Николаев
Учебное заведение: МННИ им.Мечникова
Вы: студент



Даны задания типа "сколько производных имеют решения в окрестности начала коордитнат..","выделить области на плоскости,в которых через каждую точку проходит единственное решение..","исследовать, являются ли функции линейно зависимыми" и т.п. Диф. уравнения и системы уравнений даются.
Где можно посмотреть решение аналогичных заданий?Желательно подробно, как для блондинок
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
V.V.
сообщение 5.1.2009, 22:46
Сообщение #2


Студент
**

Группа: Продвинутые
Сообщений: 144
Регистрация: 3.10.2007
Город: Переславль-Залесский
Вы: преподаватель



Светлана, без паники!

Спокойно выложите сюда задачи с полными условиями. В крайнем случае Вас пошлют изучать примеры.

В первом уравнении надо несколько раз дифференцировать. Понятно, что как только попадется y в отрицательной степени, говорить об определенности производной в окрестности (0,0) сложно.

Особые точки исследуются стандартно. Находите собственные значения соответствующей матрицы и выясняете, какая особая точка. (стр. 33-35 http://u-pereslavl.botik.ru/~trushkov/ode/ode.pdf)

Выделить область существования и единственности тоже просто. В формулировке теоремы Коши-Липшица говорится об основном отрезке, на котором определено решение задачи Коши. Он находится явно по простому алгоритму. Собственно, его и надо найти.
(стр. 16)

Теоремы Ляпунова (стр. 50), Рауса-Гурвица (стр. 124) и Михайлова (стр. 127) относятся к теории устойчивости.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 29.5.2025, 15:13

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru