IPB

Здравствуйте, гость ( Вход | Регистрация )

> int (0 pi/2) sin x/(2 + sin x) dx
Виталий
сообщение 20.4.2008, 11:17
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 38
Регистрация: 6.11.2007
Город: Санкт-Петербург
Учебное заведение: СПБГМТУ
Вы: студент



Помогите, пожалуйста, вычислить интеграл
int (0 pi/2) sin x/(2 + sin x) dx
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
tig81
сообщение 20.4.2008, 11:22
Сообщение #2


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



int (0 pi/2) sin x/(2 + sin x) dx = int (0 pi/2) (sin x + 2 - 2)/(sin x + 2) dx =
= int (0 pi/2) dx - 2 * int (0 pi/2) dx/(sin x + 2) =
= (x)_{0}^{pi/2} -
- 2 * int (0 pi/2) dx/(2 * sin (x/2) * cos (x/2) + 2 * sin^2 (x/2) + 2 * cos^2 (x/2)) dx =
= pi/2 - 2 * int (0 pi/2) dx/(cos^2 (x/2) * (2 * tg (x/2) + 2 * tg^2 (x/2) + 2)) dx =
= pi/2 - 4 * int (0 pi/2) d(tg (x/2))/(2 * tg (x/2) + 2 * tg^2 (x/2) + 2) dx =
= | tg (x/2) = t | = pi/2 - 4 * int (0 1) dt/(2 * t^2 + 2 * t + 2) =
= pi/2 - 2 * int (0 1) dt/(t^2 + t + 1) = pi/2 - 2 * int (0 1) dt/((t + 1/2)^2 + 3/4) =
= pi/2 - 2 * int (0 1) d(t + 1/2)/((t + 1/2)^2 + 3/4) = | t + 1/2 = u | =
= pi/2 - 2 * int (1/2 3/2) du/(u^2 + 3/4) =
= | u = 3^(1/2)/2 * v, du = 3^(1/2)/2 dv, v = 2 * u/3^(1/2) | =
= pi/2 - 2 * int (1/3^(1/2) 3^(1/2)) 3^(1/2)/2 dv/(3/4 * v^2 + 3/4) =
= pi/2 - 2 * int (1/3^(1/2) 3^(1/2)) 3^(1/2)/2 dv/(3/4 * (v^2 + 1)) =
= pi/2 - 2 * int (1/3^(1/2) 3^(1/2)) dv/(3^(1/2)/2 * (v^2 + 1)) =
= pi/2 - 2 * 2/3^(1/2) * int (1/3^(1/2) 3^(1/2)) dv/(v^2 + 1) =
= pi/2 - 4/3^(1/2) * (arctg v)_{1/3^(1/2)}^{3^(1/2)} =
= pi/2 - 4/3^(1/2) * (arctg 3^(1/2) - arctg (1/3^(1/2))) =
= pi/2 - 4/3^(1/2) * (pi/3 - pi/6) = pi/2 - 4/3^(1/2) * pi/6 =
= pi/2 - 2/3^(1/2) * 1/3 * pi = 1/18 * pi * (9 - 4 * 3^(1/2))
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 21:04

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru