IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> Решите, пожалуйста, 2 задачки, 1-по формуле полной вероятности, 2-по формуле Байеса
ksenia5
сообщение 1.3.2008, 12:54
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 1
Регистрация: 1.3.2008
Город: Новосибирск



Решите, пожалуйста, у нас просто вообще не было никогда тервера, а тут понадобилось решить.

1) Имеется n урн, в каждой из которых по m белых и по k черных шаров. Из первой урны наудачу извлекается один шар и перекладывается во вторую. Затем из второй урны наудачу извлекается один шар и перекладывается в третью урну и т. д. Определить вероятность извлечения после такого перекладывания белого шара из последней урны.

2) Из партии в пять изделий наудачу взято одно изделие, оказавшееся бракованным. Количество бракованных изделий равновозможно любое. Какое предположение о количестве бракованных изделий наиболее вероятно?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
venja
сообщение 1.3.2008, 16:29
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



1) Аналогичную задачу уже решал, привожу ее условие и решение.

"Имеется бесконечная последовательность урн, в каждой из которой n белых и m чёрных шаров. Из первой берётся один шар и перекладывается во вторую. Затем случайным образом выбирается шар из второй и перекладывается в третью и т.д. Найти вероятность P(k) того, что шар, извлеченный из k-oй урны, окажется белым (k=1,2,...)."

Оказывается

P(k)=n/(n+m)

Доказательство проведем по индукции по k.

1) k=1. Очевидно, что P(1)=n/(n+m)
2) На всякий случай убедимся в справедливости формулы для k=2. По формуле полной вероятности

P(2)=P(1)*[(n+1)/(n+m+1)]+(1-P(1))*[n/(n+m+1)]=n/(n+m)

3) Пусть формула верна для k:=k-1. Докажем тогда, что формула верна для k:=k. По формуле полной вероятности

P(k)=P(k-1)*[(n+1)/(n+m+1)]+(1-P(k-1))*[n/(n+m+1)]=n/(n+m)

2) Гипотезы - число бракованных изделий (6 гипотез : от 0 до 5)
Теперь по формуле Байеса считайте вероятности гипотез и выбирайте наибольшую.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
2 чел. читают эту тему (гостей: 2, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 12:43

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru