![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
Игорь |
![]()
Сообщение
#1
|
Студент ![]() ![]() Группа: Продвинутые Сообщений: 63 Регистрация: 5.10.2007 Город: Ноябрьск ![]() |
Помогите, пожалуйста, найти интеграл
int dx/(x^(5/6) - x^(1/2)) Заранее спасибо! |
![]() ![]() |
tig81 |
![]()
Сообщение
#2
|
Академик ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Преподаватели Сообщений: 15 617 Регистрация: 15.12.2007 Город: Украина, Запорожье Учебное заведение: ЗНУ Вы: преподаватель ![]() |
int dx/(x^(5/6) - x^(1/2)) = | x^(1/6) = t, x = t^6, dx = 6 * t^5 dt | =
= int 6 * t^5/(t^5 - t^3) dt = 6 * int t^5/(t^3 * (t^2 - 1)) dt = = 6 * int t^2/(t^2 - 1) dt = 6 * int (t^2 - 1 + 1)/(t^2 - 1) dt = = 6 * int dt + 6 * int dt/(t^2 - 1) = 6 * t + 3 * int 2/((t - 1) * (t + 1)) dt = = 6 * t + 3 * int ((t + 1) - (t - 1))/((t - 1) * (t + 1)) dt = = 6 * t + 3 * int dt/(t - 1) - 3 * int dt/(t + 1) = = 6 * t + 3 * ln |t - 1| - 3 * ln |t + 1| + C = 6 * t + 3 * ln |(t - 1)/(t + 1)| + C = = | t = x^(1/6) | = 6 * x^(1/6) + 3 * ln |(x^(1/6) - 1)/(x^(1/6) + 1)| + C |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 25.5.2025, 12:12 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru