![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() ![]() |
![]() |
Sonya2023 |
![]()
Сообщение
#1
|
Новичок ![]() Группа: Пользователи Сообщений: 1 Регистрация: 16.7.2023 Город: Братск Учебное заведение: ТУСУР Вы: студент ![]() |
Добрый день. Есть задача
"Вес тропического грейпфрута, выращенного в Краснодарском крае, нормально распределенная случайная величина с неизвестным математическим ожиданием и дисперсией, равной 0.04. Агрономы знают, что 65% фруктов весят меньше, чем 0.5 кг. Найдите ожидаемый вес случайно выбранного грейпфрута." Вот решение: Ожидаемый вес случайно выбранного грейпфрута – это математическое ожидание, которое можно найти из формулы попадания нормально распределённой величины в интервал α<X<β: P(α<X<β)= Φ((β-a)/σ)- Φ((α-a)/σ) По условию задачи σ= √(D(X) )= √0.04=0.2 Также известно, что P(X<0.5)=0.65 Здесь α=0,β=0.5 => P(0<X<0.5)= Φ((0.5-a)/0.2)- Φ((0-a)/0.2)=0.65 Φ((0.5-a)/0.2)+0.5=0.65 тогда Φ((0.5-a)/0.2)=0.15 По таблице Лапласа находим, что (0.5-a)/0.2=0.385 => a= 0.5-(0.385*0.2) = 0.423 Ответ: ожидаемый вес случайно выбранного грейпфрута = 0.423 кг. Решение я содрала с интернета. Но просто содрать не интересно, надо разобраться. И тут проблема. Как по значению 0,15 получился аргумент 0,385??? Ни в одной таблице Лапласа 0,15 не соответствует этому аргументу. Что я делаю не так? И ещё вопрос Φ((0.5-a)/0.2)+0.5=0.65 в этой строчке почему +0.5? Что это значит? Спасибо |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 29.5.2025, 16:18 |
Зеркало сайта Решебник.Ру - reshebnik.org.ru