IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в эту темуОткрыть новую тему
> Непонятная задача по геометрии
Сергей1.1.3
сообщение 22.12.2021, 18:02
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 1
Регистрация: 22.12.2021
Город: Новосибирск
Учебное заведение: Школа



Точки М, N и Р лежат соответственно на сторонах АВ, ВС и СА треугольника ABC, причем MN||AC, NP||AB. Найдите стороны четырехугольника AMNP, если: а) АВ = 10 см, АС= 15 см, PN:MN=2:3; Наткнулся на эту задачу в учебнике и что-то совсем не понял как её решили. На всех сайтах одно и то же. (https://5terka.com/node/8648 ссылка на решение). Пишут что ABC~MBN, далее так как треугольники подобны, то отношения сторон у них будет равное. Тогда, пусть PN=2x, MN=3x. AB/MB=AC/MN. И вот тут совсем непонятный момент, получают такое уравнение, 10/(10-2x)=15x/3x. Как его составили? С левой частью всё ясно и логично, но вот с правой частью. Откуда 15x в числителе? Разве не должно быть 15/3x? В общем это был первый вопрос. А второй такой. Если AMNP параллелограмм (это легко мы легко доказываем), то можно ведь сказать, что ABC~MNP? AB/AC=2/3, PN/MN=2/3, и угол BAC=MNP. Получается подобие по двум сторонам и углу. Тогда справедливо равенство AB/PN=AC/MN=2/3 PN=15 MN=22,5 Объясните пожалуйста что не так)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2022, 10:35

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru