IPB

Здравствуйте, гость ( Вход | Регистрация )

> Задача про лифт
Конфетка
сообщение 26.10.2014, 1:00
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 16
Регистрация: 26.10.2014
Город: Коломна



В лифт на первом этаже сели 5 пассажиров.
Какова вероятность, что двое из них выйдут на одном этаже, а остальные на разных, если дом десятиэтажный.

Рассуждаю так.
Если два чел. выйдут на одном этаже, и ещё трое оставшихся на других трёх этажах, то всего они будут выходить на четырёх этажах. Значит, на пяти этажах никто не выходит. Т.е. задача сводится к нахождению вероятности события, что никто из пяти пассажиров не вышел на пяти этажах, а на остальных четырёх вышел хотя бы один человек.
n=9^5.
А вот с m как-то не очень всё ясно.
Предполагаю, что m=m1*m2*m3 (это для событий, а у меня почему-то вер-ти получаются):
m1=С_9^5*(8/9)^5 - вер-ть невыходов на пяти этажах.
Смущает то, что здесь оказалась вероятность 8/9, но пока не представляю, куда её деть. (IMG:style_emoticons/default/sad.gif)
m2=C_5^2*(1/9)^2*(8/9)^3 - вышло двое из пятерых на одном этаже.
m3=C_5^1*(1/9)^1*(8/9)^4 - вышел один из пятерых на одном этаже.
Наверное, что-то ещё надо добавить к m1 и m3, т.к. таких этажей не один.
Или, может, просто p=5*m1+m2+3*m3?
Или же m=(С_9^5)^5*C_5^2*(C_5^1)^3? - смущает то, что здесь этажи с людьми смешались.
Может, ещё в m2 и m3 добавить С_9^2 и С_9^1 или же m=(С_9^5)*C_9^2*(C_9^1).
Или С(9,5)*С(4,1)*С(3,1)*С(2,1) - тогда оставшиеся два пассажира выйдут на поселеднем оставшемся этаже.
Прошу помощи. (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
venja
сообщение 26.10.2014, 6:10
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Задача непростая. Для большей ясности нужно сначала описать пространство элементарных исходов. Сначала я бы пронумеровал пассажиров:1,2,3,4,5. Тогда элементарные исходы этого эксперимента - это всевозможные упорядоченные наборы из 5-ти чисел: (n1,n2,n3,n4,n5), где n1 означает номер этажа, на котором вышел первый пассажир и т.д. Ясно, что всего таких элементарных событий действительно n=9^5. Теперь поговорим о благоприятных исходах. Например, таким будет исход (2,2,3,4,5), когда именно пассажиры 1 и 2 вышли на втором этаже, третий - на третьем, четвертый - на четвертом, пятый - на пятом. А теперь, сначала оставив теми же этажи, на котором вышли двое и вышли по одному, меняйте всевозможно номера пассажиров, которые это сделали. Считайте число вариантов. Получите общее число благоприятных исходов, но только для случая, когда двое вышли именно на втором этаже, а по одному вышло на 3, 4 и 5 этажах. Теперь считайте число вариантов, которыми можно выбрать этаж для выхода двоих и разные этажи для выхода троих. И перемножайте с предыдущем числом вариантов (когда этажи эти фиксировались). Думаю, как-то так.
Интересно, где такие задачи дают?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Конфетка
сообщение 26.10.2014, 6:43
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 16
Регистрация: 26.10.2014
Город: Коломна



venja, спасибо за разъяснение.
Сейчас попробую продолжить решение.

Цитата(venja @ 26.10.2014, 9:10) *
Теперь считайте число вариантов, которыми можно выбрать этаж для выхода двоих и разные этажи для выхода троих. И перемножайте с предыдущем числом вариантов (когда этажи эти фиксировались).
Здесь всё просто: 9*8*7*6 - всего они выходят на четырёх этажах (четыре раза), для первого из них 9 вариантов-этажей, а далее для каждой группы (1 или 2 чел.) число этажей уменьшается на 1.

Цитата(venja @ 26.10.2014, 9:10) *
А теперь, сначала оставив теми же этажи, на котором вышли двое и вышли по одному, меняйте всевозможно номера пассажиров, которые это сделали. Считайте число вариантов.
Тут, наверное, число сочетаний из пяти, вот только по сколько? По 4 - так как пассажиры всего выходят на четырёх этажах (всего 4 группы)?
Т.о. m=9*8*7*6*С(5,4). Так?
Или же не С(5,4), а С(5,2) - т.е. определим где выходит эта парочка - два числа из n1,n2,n3,n4,n5, тогда остальные пассажиры (которые по одному выходят) выйдут на оставшихся трёх этажах из рассматриваемой четвёрки этажей (т.е. эта парочка однозначно задаёт всю пятёрку цифр n1,n2,n3,n4,n5).
Тогда m=9*8*7*6*С(5,2).
Что-то я совсем запуталась...

Цитата(venja @ 26.10.2014, 9:10) *
Интересно, где такие задачи дают?
Ясное дело где - в универе.

И всё же меня интересует, как здесь можно применить формулу Бернулли.
Ведь знаменатель один и тот же, или лучше не пробовать?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 26.5.2025, 3:17

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru