IPB

Здравствуйте, гость ( Вход | Регистрация )

> Распределение Гаусса, Распределение Гаусса
andreas
сообщение 25.7.2007, 5:06
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 25.7.2007
Город: Нижний Новгород
Учебное заведение: ННГУ
Вы: студент



Народ, хелп. Не понимаю, что значит "случайная величина распределена по нормальному закону"? Правильно ли понимать так- если взять много выборок из генеральной совокупности и вычислить для каждой выборки среднее значение и СКО, а потом построить по полученным значениям график, то получится функция, похожая на функцию Гаусса? (IMG:style_emoticons/default/sad.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов
venja
сообщение 25.7.2007, 13:33
Сообщение #2


Доцент
******

Группа: Преподаватели
Сообщений: 3 615
Регистрация: 27.2.2007
Город: Екатеринбург
Вы: преподаватель



Цитата(andreas @ 25.7.2007, 11:06) *

Правильно ли понимать так- если взять много выборок из генеральной совокупности и вычислить для каждой выборки среднее значение и СКО, а потом построить по полученным значениям график, то получится функция, похожая на функцию Гаусса? (IMG:style_emoticons/default/sad.gif)


если взять много выборок из генеральной совокупности и вычислить для каждой выборки среднее значение и СКО, то получится 2 колонки чисел. Как и какой график Вы теперь собираетесь строить?
Поясните, иначе трудно ответить на поставленный вопрос.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
andreas
сообщение 26.7.2007, 5:03
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 11
Регистрация: 25.7.2007
Город: Нижний Новгород
Учебное заведение: ННГУ
Вы: студент



Цитата(venja @ 25.7.2007, 13:33) *

если взять много выборок из генеральной совокупности и вычислить для каждой выборки среднее значение и СКО, то получится 2 колонки чисел. Как и какой график Вы теперь собираетесь строить?
Поясните, иначе трудно ответить на поставленный вопрос.

Все я понял как построить график. Чтобы построить кривую Гаусса, нужно знать 2 величины - мат. ожидание и СКО.Это константы(?). X- переменная. Это проще, чем я думал. Так? Но я все равно не понимаю физический смысл этого распределения. Зачем это нужно?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Juliya
сообщение 15.9.2009, 20:23
Сообщение #4


Старший преподаватель
*****

Группа: Активисты
Сообщений: 1 197
Регистрация: 4.11.2008
Город: Москва
Вы: преподаватель



Цитата(andreas @ 26.7.2007, 9:03) *

Все я понял как построить график. Чтобы построить кривую Гаусса, нужно знать 2 величины - мат. ожидание и СКО.Это константы(?). X- переменная. Это проще, чем я думал. Так? Но я все равно не понимаю физический смысл этого распределения. Зачем это нужно?

Такое распределение имеют многие случайные величины, с которыми сталкиваются исследователи на практике - у такой случайной величины большинство значений сконцентрировано вокруг мат.ожидания, а чем дальше от него, тем меньше значений СВ попадает в соответствующие интервалы. Плотность такого распределения и отражает функция плотности вероятностей - функция Гаусса, напоминающая колокольчик. Его пик - это и есть мат.ожидание. А почти все возможные значения СВ (99,73%) не далее чем на 3 сигма (СКО) вокруг мат.ожидания.

Зная эти 2 характеристик, как вам уже объяснили, можно находить вероятности попадания в любые интервалы.

Например, Вы - бизнесмен и шьете мужские костюмы. Вы провели маркетинговые исследования и имеете хорошую выборку по росту мужчин вашей покупательской группы. Проверяете её на нормальный закон (а так оно и будет, скорее всего), находите МО и СКО и все - вы можете найти, какие % какого роста вам необходимо пошить - правильные расчеты позволят вам максимально точно обеспечить поставки костюмов всех ростов...

Цитата(andreas @ 25.7.2007, 9:06) *

Правильно ли понимать так- если взять много выборок из генеральной совокупности и вычислить для каждой выборки среднее значение и СКО, а потом построить по полученным значениям график, то получится функция, похожая на функцию Гаусса? (IMG:style_emoticons/default/sad.gif)

нужно взять не много выборок, а одну. Разбить всю область значений на интервалы, посчитать, сколько наблюдений попадает в каждый интервал, построить гистограмму - график, отражающий частоты попадания в интервалы. Так вот, если случ. величина имеет нормальный закон распределения, эта гистограмма будет похожа на кривую Гаусса.
Ну что-то типа этого:
(IMG:http://s59.radikal.ru/i166/0909/f2/42cf2eaa831e.jpg)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Сообщений в этой теме


Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 16:10

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru