IPB

Здравствуйте, гость ( Вход | Регистрация )

> int 1/(3sin(x)+4cos(x)+5)dx
Titan
сообщение 17.6.2010, 8:48
Сообщение #1


Школьник
*

Группа: Продвинутые
Сообщений: 15
Регистрация: 16.6.2010
Город: Екатеринбург
Вы: студент



integrate 1/(3sin(x)+4cos(x)+5)dx подскажите плз каким методом он решается?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
 
Ответить в эту темуОткрыть новую тему
Ответов(1 - 7)
tig81
сообщение 17.6.2010, 8:50
Сообщение #2


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Универсальная тригонометрическая подстановка.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Titan
сообщение 17.6.2010, 8:54
Сообщение #3


Школьник
*

Группа: Продвинутые
Сообщений: 15
Регистрация: 16.6.2010
Город: Екатеринбург
Вы: студент



Цитата(tig81 @ 17.6.2010, 14:50) *

Универсальная тригонометрическая подстановка.

это выразить синус и косинус через тангенс?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 17.6.2010, 8:56
Сообщение #4


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Titan @ 17.6.2010, 11:54) *

это выразить синус и косинус через тангенс?

тангенс половинного аргумента
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Titan
сообщение 17.6.2010, 9:26
Сообщение #5


Школьник
*

Группа: Продвинутые
Сообщений: 15
Регистрация: 16.6.2010
Город: Екатеринбург
Вы: студент



Цитата(tig81 @ 17.6.2010, 14:56) *

тангенс половинного аргумента

довел до разложения на 2 интеграла :
1/2 integrate 1/(tg(x/2)+3)^2d(x/2) + 1/2 integrate (tg(x/2))^2/(tg(x/2)+3)^2d(x/2)
дальше нужно делать замену tg(x/2)=t или что?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 17.6.2010, 9:32
Сообщение #6


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



Цитата(Titan @ 17.6.2010, 12:26) *

довел до разложения на 2 интеграла :
1/2 integrate 1/(tg(x/2)+3)^2d(x/2) + 1/2 integrate (tg(x/2))^2/(tg(x/2)+3)^2d(x/2)

Показывайте решение, вы что-то не то сделали. После того, как вы сделаете замену tg(x/2)=t, тангенса просто не должно остаться.
Поищите примеры на форуме или погуглите, я так понимаю вы просто синус и косинус выразили через тангенс половинного. Универсальная тригонометрическая подстановка делается немного не так. Хотя можете теперь делать
Цитата
замену tg(x/2)=t

Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
граф Монте-Кристо
сообщение 17.6.2010, 15:10
Сообщение #7


Доцент
******

Группа: Преподаватели
Сообщений: 3 840
Регистрация: 27.9.2007
Из: Старый Оскол
Город: Москва
Учебное заведение: МФТИ/МАИ
Вы: другое



По-моему, проще будет преобразовать 3sin(x)+4cos(x) = 5*cos(x-f), где cos(f) = 4/5, sin(f) = 3/5, и сделать замену x-f = 2t. В знаменателе будет 5cos(2t) + 5 = 5*2*cos^2(t). Дальше всё просто.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tig81
сообщение 17.6.2010, 15:28
Сообщение #8


Академик
********

Группа: Преподаватели
Сообщений: 15 617
Регистрация: 15.12.2007
Город: Украина, Запорожье
Учебное заведение: ЗНУ
Вы: преподаватель



или так (IMG:style_emoticons/default/smile.gif)
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия Сейчас: 25.5.2025, 10:10

Книжки в помощь: "Сборник заданий по высшей математике" Кузнецов Л.А., "Сборник заданий по высшей математике" Чудесенко В.Ф., "Индивидуальные задания по высшей математике" Рябушко А.П., и другие.




Зеркало сайта Решебник.Ру - reshebnik.org.ru