Есть задачка: Доказать, что если M(exp(aX)) существует, то P{X > e} <= exp(-ae)*M(exp(aX)), a > 0
Помогите пожалуйста решить задачку, я понимаю что необходимо использовать характеристическую функцию, но не понимаю как
О_о... при чём тут вообще характеристические функции?
Какие неравенства знаете для P(X > e), где X > 0, e > 0?
я смотрю, народ так и тянет на характеристические функции.. как ехр встретили - все ..она!!
ТС, у Вас в названии темы написано, что Вам надо использовать..
Боюсь, что предельные теоремы тут совсем ни с какого боку Автор, ответ будет?
ну ЗБЧ исторически идет рядом с предельными, поэтому как-то и связаны в голове...
Насколько мне известно, ЗБЧ и ЦПТ входят в одну главу и считаются подразделами предельных теорем! Причём тут характеристическая функция, ответ прост - разве не она используется для доказательства ЦПТ ? А с учётом того, что я плохо понимаю какую из пред.теорем использовать, я подумал так, да, конечно же из-за того, что увидел экспоненту Но больше конечно склоняюсь к неравенству Чебышева!
Но возникает вопрос: какие-такие манипуляции надо сделать, чтоб на него выйти, ибо я если честно вообще не понимаю как связана вероятность СВ X и совершенно другой СВ M(exp(aX))
Как связаны события {X > e} и {exp(aX) > exp(ae)}?
З.Ы. Никакие ЗБЧ, ЦПТ, характеристические функции тут одинаково ни при чем.
разве здесь не лемма (неравенство) Маркова?
Оно, конечно, по смыслу не ЗБЧ, но исторически идет в этой теме...
Исторически в этой теме могут идти даже неравенства с модулями на числовой прямой, ряды Тейлора и формула Эйлера в комплексном анализе. Предельные теоремы - это всякие ЗБЧ, теорема Пуассона, ЦПТ в разных формах, законы повторного логарифма, арксинуса, теоремы о больших уклонениях и прочие предельные теоремы. Вероятностные неравенства - это всё же неравенства.
Абсолютно согласна. Предельные - значит в пределе, при n->oo
здесь неравенство ни разу не предельное, просто обычно встречающееся именно в этой теме ТВ. прошу прощения за неточности...
Да ладно, вот только автор что-то не спешит решать задачу...
Извините, что не пишу сразу, нет времени каждый день на форум заходить
Спасибо за лемму Маркова, если честно то о такой не подозревал ...
вот так тогда доказать возможно ? посмотрите пожалуйста
Эскизы прикрепленных изображений
Ну и так можно, вот только зачем повторять доказательство неравенства Маркова (да ещё и в частном случае - только для абсолютно непрерывных распределений)?
Есть готовое неравенство P(Y > c) <= EY / c , Y > 0, c > 0.
P(X > e) = P(exp(aX) > exp(ae)), ну и примените неравенство Маркова к последней вероятности.
Если не было нер-ва Маркова, то как без него доказывалось нер-во Чебышёва?
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)