Автор: 4ept 10.1.2010, 0:31
Функцию f(x), заданную на отрезке [2, 6], разложить в действительный ряд Фурье. Построить графики f(x) на [2, 6] и суммы ряда на R. f(x)=2х+1.
... четвертый день рою интернет в поисках похожего решения...
разложение на отрезке [-2, 2] сделал.
Все что нашел по моему случаю:
Цитата
Непериодическая функция f(x) может быть представлена в виде ряда Фурье на любом конечном промежутке [a,b], на котором она удовлетворяет условиям Дирихле. Для этого можно поместить начало координат в середину отрезка [a,b] и построить функцию f1(x) периода T=2l=|b-a|, такую что f1(x)=f(x) при -l<=x<=l.
Разлагаем f1(x) в ряд Фурье. Сумма этого ряда во всех точках отрезка [a,b] (кроме точер разрыва) совпадает с заданной функцией f(x)
Однако, примера, как это делается, нигде не нашел.
Попробовалрешить задачу "в лоб", но почему-то график суммы сместился на 9 вверх(см. вложение).
В чем ошибка?
Как перейти от f(x) к f1(x) как указано в цитате?
Прикрепленные файлы
f.doc ( 36.5 килобайт )
Кол-во скачиваний: 203
Автор: Dimka 10.1.2010, 6:42
f(x)=18/2+SUMNMA(.....)
а так запись формул правильная. Правильность интегрирования я не проверял.
Автор: 4ept 10.1.2010, 8:39
Цитата(Dimka @ 10.1.2010, 8:42)

f(x)=18/2+SUMNMA(.....)
а так запись формул правильная. Правильность интегрирования я не проверял.
Точно. Вот что значит свежий взгляд)