Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Теория вероятностей _ задача по нахождению математического ожидания

Автор: Дед 7.12.2009, 16:23

В лотерее разыгрывается автомобиль стоимостью 200,000 рублей, велосипед стоимостью 5,000 рублей и часы стоимостью 1,000 рублей. Найти математическое ожидание выигрыша для лица имеющего один билет, если общее число билетов равно 100.

Как я понимаю нужно составить для решения таблицу вида:

X l____l_____l_____l_____l
p l____l_____l_____l_____l

Где вероятность будет соответственно 0,01 для выигрыша и автомобиля и велосипеда и часов, т. е. p1=0,01, p2=0,01 и p3=0,01 и вероятность для проигрыша будет p4=0,97

А ожидание у нас равно M(X)=p1x1+p2x2+....+pnxn. так вот как найти величину X?
Или может у меня суть решения не правильная?

Автор: malkolm 7.12.2009, 16:48

Величина Х - размер выигрыша - у Вас найдена: настолько, насколько можно вообще найти случайную величину. Какие значения принимает Х? Иными словами,
p1 = 0,01 = P(X = x1), где x1 = ?
p2 = P(X = x2), где x2 = ?
и т. д.

Автор: Дед 8.12.2009, 18:01

эм...получется размер выигрыша нужно перемножить на вероятность? если так то там получается число несколько тысяч

Автор: malkolm 8.12.2009, 18:22

Несколько - это сколько?

Автор: Дед 10.12.2009, 15:05

2060 о_О

Автор: Juliya 10.12.2009, 15:13

да, все верно

Автор: Дед 10.12.2009, 18:34

хм. спасибо всем.

Автор: malkolm 10.12.2009, 18:42

А чего Вы удивляетесь? Если случайная величина принимает значение двести тысяч с вероятностью 1/100, то каким должно быть её среднее значение? Ну попробуйте представить центр тяжести распределения ста грамм пластилина по прямой, где в точке 0 сидит 97 грамм, в точке 1000 - один грамм, в точке 5000 - ещё грамм, и ещё грамм в точке 200 000. Мало, но зато в очень далёкой точке. Где точка равновесия этой массы пластилина?

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)