Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Линейная алгебра и аналитическая геометрия _ привести к каноническому виду

Автор: alenkiy-13 1.12.2009, 23:14

Доброго времени суток! Уравнение 3*x^2+6x-8y+6z-7=0. Привести к каноническому виду и указать тип поверхности.

Ход решения: 3*(х-1)^2-8у+6z-10=0, 3*x'^2+2*py+2*qz+r=0 (p=-4,q=3,r=10). Надо привести к виду x'^2=2*q'z ( уравнение параболического цилиндра).
Читала, что надо повернуть систему координат вокруг оси ОХ так, чтобы новая ось ординат стала параллельна плоскости 2*px+2qz+r=0. Не могу сообразить как это делается.

Подскажите, пожалуйста, как найти параметр q'.

Автор: dr.Watson 4.12.2009, 15:59

1) У вас ошибка - должно быть (x+1)^2, а не (x-1)^2 в первом слагаемом.
2) Для поворота (его надо делать в плоскости yz) просто отнорнормируйте вектор (-4, 3) - это половинки коэффициентов при y и z и вектор (3, 4, который очевидно перпендикулярен первому.
После поворота еще сдвиг понадобится, чтобы избавиться от свободного члена, но ... это потом.

Автор: alenkiy-13 5.12.2009, 16:38

Спасибо!

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)