Версия для печати темы
Образовательный студенческий форум _ Линейная алгебра и аналитическая геометрия _ коллинеарность
Автор: busena 2.11.2009, 8:21
вектор х коллинеарен вектору а=(6, -8, -7,5) образует острый угол с осью z.зная что /х/=50 найти его координаты
х=λа
х/а=50
а=50х
Это правильно или вообще ни туда?
Автор: tig81 2.11.2009, 8:28
Цитата(busena @ 2.11.2009, 10:21)

х/а=50
а=50х
а что этим вы хотели написать? Вектор х деленный на вектор а? Или не то?
Автор: busena 2.11.2009, 8:31
да,то.
/х/=sqrt x^2+y^2+z^2
не могу понять как это разложить.и зачем в условии дано,что образует острый угол
Автор: tig81 2.11.2009, 8:40
Цитата(busena @ 2.11.2009, 10:31)

да,то.
Как определяется операция деления векторов?
Цитата
/х/=sqrt x^2+y^2+z^2
не могу понять как это разложить.и зачем в условии дано,что образует острый угол
Вы писали, что
Цитата
х=λа
тогда координаты вектора х какие?
Автор: busena 2.11.2009, 8:43
их надо найти
Автор: tig81 2.11.2009, 8:51
Цитата(busena @ 2.11.2009, 10:43)

их надо найти
Логично.
ЕЩЕ РАЗ:
Если х=λа и а=(6, -8, -7,5), то х=( , , )?
Автор: busena 2.11.2009, 12:20
так а λ это что??????????как я могу координаты умножить?
Автор: tig81 2.11.2009, 12:22
Цитата(busena @ 2.11.2009, 14:20)

так а λ это что??????????
а я откуда знаю, это вы его писали?! Могу предположить, что некоторое ненулевое число.
Цитата
как я могу координаты умножить?
какие координаты? На что? Почему не можете?
Автор: busena 2.11.2009, 12:25
плин,это в теории было написано,я оттуда и взяла.хорошо,а как тада можно решить без λ
Автор: tig81 2.11.2009, 12:29
Цитата(busena @ 2.11.2009, 14:25)

плин,это в теории было написано,я оттуда и взяла.хорошо,а как тада можно решить без λ
а чем вам λ не нравится? Что вы знаете про операцию "умножение вектора на число"?
Автор: busena 2.11.2009, 12:42
так если она у меня неизвестна
Автор: tig81 2.11.2009, 12:47
Цитата(busena @ 2.11.2009, 14:42)

так если она у меня неизвестна
ну правильно, ее вам надо найти.
http://www.a-geometry.narod.ru/problems/problems_31.htm
Автор: busena 2.11.2009, 12:57
да уж.спасибо.
Автор: tig81 2.11.2009, 13:01
разбирайтесь. Повторите операции над векторами и все, что с ними связано.
Автор: busena 3.11.2009, 6:58
спасибо большое
Автор: tig81 3.11.2009, 9:20
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)