Автор: tits 12.8.2009, 15:29
Вероятность одного попадания в цель при одном
залпе из двух орудий равна 0,38. Найти вероятность
поражения цели при одном выстреле первым из орудий,
если известно, что для второго орудия эта вероятность
равна 0,8.
Событие А - попадание из двух орудий
p(a) = 0.38
B - попадание из первого орудия
P(
- ?
B1 - попадание из второго орудия
P(B1) - 0.8
Эти события независимые и одно не исключает второго тоесть они совместны
А дальше дело не идет
((((
помогите
Автор: tits 12.8.2009, 15:51
Еще не понятно когда использовать теорему сложения а когда умножения
Т.к определения их не понятны:
Теорема сложения:
Событие A - первый выстрел
Событие B - второй выстрел
Сумма событий A+B - произошел выстрел первый и второй
Теорема умножения
Событие A - первый выстрел
Событие B - второй выстрел
Произведение событий A и B называеют событие в совместном появлении этих событий!
И? Тогда становится не понятно в каком случае что использовать?
(((
Автор: tits 12.8.2009, 16:02
Еще один вопрос
Пример2. В урне 3 красных, 5 синих и 2 белых шара. Наудачу вынимают один шар. Какова вероятность того, что шар окажется цветным?
Решение:
Пусть событие А- вынут синий шар, событие В- красный шар. Эти события несовместны. Интересующее событие- вынут цветной шар, означает, что вынут красный или синий, т.е. событие А+В. используем теорему о сумме несовместных событий Р(А+В)=Р(А)+Р(В). вычислим вероятности событий А и В:
Р(А)=5/10=1/2; Р(В)=3/10. Тогда искомая вероятность равна Р(А+В) = 1/2+3/10= 8/10=0,8.
------------------
Пусть событие А- вынут синий шар, событие В- красный шар. Эти события несовместны. - почему они не совместны?
Что вынутый синий шар исключает появление в событии B красного шара?
Или я чего то не понимаю?
Автор: tig81 12.8.2009, 18:31
Цитата(tits @ 12.8.2009, 18:51)

Сумма событий A+B - произошел выстрел первый и второй
первый или второй
Цитата
Произведение событий A и B называеют событие в совместном появлении этих событий!
первый и второй
Автор: tits 12.8.2009, 18:33
tig81, спасибо понял.
А вот самую верхнюю задачку так и не догнал как решать
((
Не поможешь? пожалуйста?
Автор: tig81 12.8.2009, 18:41
Цитата(tits @ 12.8.2009, 18:29)

Вероятность одного попадания в цель при одном
залпе из двух орудий равна 0,38
Обозначим события:
А-одного попадания в цель при одном залпе из двух орудий
Р(А)=0,38
В1-попало первое орудие
В2-попало второе орудие
Р(В2)=0,8
А=В1В2+В1неВ2+неВ1В2
Р(А)=Р(В1)Р(В2)+Р(В1)Р(неВ2)+Р(неВ1)Р(В2)
0,38=х*0,8+х*(1-0,8)+(1-х)*0,8
Я так эту задачу поняла. Могу ошибаться.
Цитата(tits @ 12.8.2009, 19:02)

Еще один вопрос
Пример2. В урне 3 красных, 5 синих и 2 белых шара. Наудачу вынимают один шар. Какова вероятность того, что шар окажется цветным?
Решение:
Пусть событие А- вынут синий шар, событие В- красный шар. Эти события несовместны. Интересующее событие- вынут цветной шар, означает, что вынут красный или синий, т.е. событие А+В. используем теорему о сумме несовместных событий Р(А+В)=Р(А)+Р(В). вычислим вероятности событий А и В:
Р(А)=5/10=1/2; Р(В)=3/10. Тогда искомая вероятность равна Р(А+В) = 1/2+3/10= 8/10=0,8.
------------------
Пусть событие А- вынут синий шар, событие В- красный шар. Эти события несовместны. - почему они не совместны?
Что вынутый синий шар исключает появление в событии B красного шара?
Или я чего то не понимаю?
По-моему, приведенная ниже задача из Гмурмана:
В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.
Обозначим события. A = {появление красного шара}, В = {появление синего шара}, С = {появление цветного шара}. Появление цветного шара означает появление либо красного, либо синего шара, т.е. С=А+В. Вероятность появления красного шара Р(А)=10/30=1/3, синего шара – Р(В)=5/30=1/6. События А и В несовместны (т.к. появление шара одного цвета исключает появление шара другого цвета), поэтому искомая вероятность Р(А+В)=Р(А)+Р(В)=1/3+1/6=1/2.
Цитата(tits @ 12.8.2009, 21:33)

tig81, спасибо понял.
пожалуйста
Написала свое виденье для "верхней" задачи.
Автор: Руководитель проекта 12.8.2009, 18:51
Цитата(tits @ 12.8.2009, 22:33)

Не поможешь поможете?
К преподавателям (да и просто незнакомым людям) стоит обращаться на «Вы», а иначе у них может пропасть желание вам помогать.
Автор: tig81 12.8.2009, 19:09
Цитата(tits @ 12.8.2009, 22:08)

tig81, 1000 благодарностей

да на здоровье, лишь бы правильно.
Автор: venja 13.8.2009, 5:48
Цитата(tits @ 12.8.2009, 21:51)

Событие A - первый выстрел
Событие B - второй выстрел
Сумма событий A+B - произошел выстрел первый и второй
Теорема умножения
Событие A - первый выстрел
Событие B - второй выстрел
Произведение событий A и B называеют событие в совместном появлении этих событий!
И? Тогда становится не понятно в каком случае что использовать?

(((
Что значит: Событие A - первый выстрел ?
Это достоверное событие, так как оба они обязательно выстрел производят.
Что такое : Сумма событий A+B - произошел выстрел первый и второй? Это опять достоверное событие, так как они выстрелили оба по условию задачи.
Тогда уж так:
А - первое орудие попало при своем выстреле
В - второе орудие попало при своем выстреле
Цитата(tig81 @ 13.8.2009, 0:41)

Обозначим события:
А-одно попадание в цель при одном залпе из двух орудий
Р(А)=0,38
В1-попало первое орудие
В2-попало второе орудие
Р(В2)=0,8
А=В1В2+В1неВ2+неВ1В2
Я понял так:
Цитата(tits @ 12.8.2009, 21:29)

Вероятность одного попадания в цель при одном
залпе из двух орудий равна 0,38.
Насколько я понял, речь идет в точности об одном попадании (а не хотя бы одном).
Поэтому
А=В1неВ2+неВ1В2
Автор: tig81 13.8.2009, 6:03
Цитата(venja @ 13.8.2009, 8:48)

Насколько я понял, речь идет в точности об одном попадании (а не хотя бы одном).
Цитата
Найти вероятность поражения цели при одном выстреле первым из орудий
Я так понимаю, что орудия выстрелили, и надо найти вероятность попадания первого орудия независимо от того, каков исход выстрела второго? Или не так?
Просто не пойму, где спрашивается
Цитата
в точности об одном попадании
?