(1 + (y^2)*sin2x)dx - (2y*cos(x)^2)dy = 0
Уравнение в полных дифференциалах
F(x,y) = x +y^2 S sin2xdx + C(y) = x + 1/2 * cos2x + C(y)
d(x + 1/2 * cos2x + C(y)) /dy = 2y * cos(x)^2
Правильно ли я нашёл С'(y) = 2y*cos(x)^2 ?
Получается d( x - ((y^2)/2) * cos2x)/dy + C'(y) = -2ycos(x)^2 ?
-ycos2x + c'(y) = -2ycos(x)^2
c'(y) = -y ?
F(x,y) = x - (y^2)/2*cos2x + c(y)
d(x - (y^2)/2*cos2x)/dy +c'(y) = -2ycos(x)^2
-ycos2x + c'(y) = -2ycos(x)^2
-y * ( cos(x)^2 - sin(x)^2 ) + c'(y) = -2ycos(x)^2
c'(y) = -ycos(x)^2 - ysin(x)^2
c'(y) = -y
Отлично, спасибо!!
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)