Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Дифференцирование (производные) _ Дифференцируемость фунции

Автор: Merlin 2.2.2009, 16:46

Функция 3*y^2=x*(x-3)^2
Её производная (x^2 -4*x + 3)/(2*y)
Как определить дифференцируема функция в определённой точке?
Судя по тому что в точках (0;0) и (3;0) производная бесконечна (функция определена, физический смысл невозможен), то касательная в этих точках вертикальная прямая. Глядя на график функции, построенный в maple (может он чушь строит), видно что для точки (0;0) касательная может проходить вертикально, а вот с точкой (3;0) ничего не понятно.
Подскажите в чём мои заблуждения?

Автор: tig81 2.2.2009, 17:41

У меня что-то производная не такая получилась.

Автор: Merlin 2.2.2009, 18:08

Цитата(tig81 @ 2.2.2009, 20:41) *

У меня что-то производная не такая получилась.


Разложим x*(x-3)^2 = x*(x^2 -6x +9)= x^3 - 6x^2 +9x

(3*y^2)'=(x^3 - 6x^2 +9x)'
3*2*y*y'=3x^2 - 6*2*x +9
сокращаем на 3
2*y*y'=x^2 - 4x + 3

y'=(x^2 - 4x + 3) / 2*y

Автор: tig81 2.2.2009, 18:23

Верно, это я просто не умею умножать. Беру свои слова обратно. smile.gif

Автор: Merlin 2.2.2009, 18:27

Цитата(tig81 @ 2.2.2009, 21:23) *

Верно, это я просто не умею умножать. Беру свои слова обратно. smile.gif

А по существу вопроса есть мысли?

Автор: dr.Watson 25.2.2009, 9:11

В окрестности точки (0;0) уравнение x(x-3)^2 - 3y^2 =0 определяет единственную функцию x(y), отсюда и исходите. В том числе получите и касательную и нормаль к кривой.

Точка (3;0) - узловая, в ней ветвление |y|=|x-3|\sqrt{x/3}.
Можно выбрать две дифференцируемые веточки y=(x-3)\sqrt{x/3} и y=(3-x)\sqrt{x/3}, пересекающихся под прямым углом. Ни касательной ни нормали к кривой нет.

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)