Помогите пожалуйста с пределом, не получается сделать, да и задание напрягает, незнакомое:
Найти пределы с помощью замены эквивалентных бесконечно малых:
lim(x->0) (1-cos5x)(2+x^2)/x^2
или такой
lim (x->1) ln(1+x)(sinx-sin1)/(sinx*lnx)
Надеюсь, есть на свете добрые люди...
У Вас у самого есть какие нибудь идеи?
Извиняюсь, не тот пример записал, вот мой
найти пределы:
lim (n->%) (5n^4+7n^3+8)/(3n^2+2n+1)=
Мое решение:
= [%/%]= lim n^4(5+7/n+8/n^4)/n^2(3+2/n+1/n^2)= (5n^2)/3
А другой пример, lim (x->%) (3x^2+(x^3+2)^0,5)/(x^2-x+1) = [%/%] = lim x^2(3+x^-0,5+?)/(x^2(1-1/x +1/x^2)= (3+x^-0,5+?)/(1-1/x+1/x^2)
Подскажите, прввильно ли у меня и что надо подставить вместо вопроса?
1. Под процентами вы имеете ввиду бесконечность?
2. В конечном ответе не может присутствовать n или x.
В первом примере ответ 00 (бескончность), во втором
lim (x->00) (3x^2+(x^3+2)^0,5)/(x^2-x+1) = [00/00] = lim x^2(3+(1/x+2/x^4)^0,5)/(x^2(1-1/x +1/x^2))=lim(3+(1/x+2/x^4)^0,5)/(1-1/x +1/x^2)=3/1=3.
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)