Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Графики (исследование функций) _ Исследовать функцию y=(2+x^2)e^-x^2

Автор: Lena1988 25.3.2008, 12:22

Здравствуйте) Помогите продолжить пожалуйста!
Задание: исследование ф-ии и построение графика
y=(2+x^2)e^-x^2
1)Область определения -вся действительная прямая. Область значения (-y>или = 2).
2)Ф-ия чётная, т.к. f(-x)=f(x)
3) Подскажите как найти вертикальные асимптоты, я знаю что нужно решить предел, но не пойму как он выглядит, помогите а(((

Автор: Руководитель проекта 25.3.2008, 12:35

Цитата(Lena1988 @ 25.3.2008, 15:22) *

Здравствуйте) Помогите продолжить пожалуйста!
Задание: исследование ф-ии и построение графика
y=(2+x^2)e^-x^2
1)Область определения -вся действительная прямая. Область значения (-y>или = 2).
2)Ф-ия чётная, т.к. f(-x)=f(x)
3) Подскажите как найти вертикальные асимптоты, я знаю что нужно решить предел, но не пойму как он выглядит, помогите а(((

Если функция определена на всей числовой прямой, то вертикальных асимптот нет.

Автор: Lena1988 25.3.2008, 12:40

А что делать в том случае если нет верт. асимптот?? первые два пункта правИльны?

Автор: Lena1988 25.3.2008, 13:28

Искать наклонные?

Автор: Black Ghost 25.3.2008, 14:41

Область значения (-y>или = 2) неправильно
Сначала надо исследовать функцию на монотонность и экстремумы, а уже потом делат выводы об области значений

Да. Нужно будет искать наклонные асимптоты, если они имеются

Автор: Lena1988 25.3.2008, 15:50

Помогите мне пожалуйста составить предел по формуле k=lim x стремится к бесконечности f(x)/x
y=(2+x^2)e^-x^2 очень прошу вас, помогите

Автор: Black Ghost 25.3.2008, 16:14

Можно воспользоваться, например, правилом Лопиталя
k=lim (2+x^2)e^-x^2 / x = lim (2/x + x) / (e^x^2) = (00 / 00) =
lim (2/x + x)' / (e^x^2)'=lim (1- 2/x^2) / (2x*e^x^2)= 0
b=lim(y(x)-kx)= lim (2+x^2)e^-x^2 = 0 (аналогично)

y=0 - горизонтальная (она же и есть наклонная) асимптота

Множество значений функции, очевидно, будет y>=0

Автор: Lena1988 25.3.2008, 16:54

Спасибо огромное что взялись мне помочь smile.gif

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)