Версия для печати темы
Образовательный студенческий форум _ Разное _ Линейное программирование
Автор: user 11.11.2008, 10:03
Здравствуйте.
Вы не могли бы проверить, правильно ли я решила задачу:
Решить задачу графическим способом. Найти такие значения действительных переменных x1 и x2, для которых целевая функция Q(x1,x2) принимает минимальное значение:
1) 2x1+x2<=4
x2>=0
4x1+x2>=4
Q(x1,x2)=x1+2x2
2)2x1+x2<=4
x1>=0
x1+2x2>=2
Q(x1,x2)=2x1+x2
Составить условие двойственной задачи.
1
У меня получилось: функция достигнет своего минимального значения в точке (1;0)
Двойственная задача
Q=4y1-4y2->min
2y1-4y2>=-1
y1-y2<=-2
2
У меня получилось: функция достигнет своего минимального значения в точке (0;2)
Двойственная задача
Q=4y1-2y2->min
2y1-y2>=-2
y1-2y2<=-1
первый раз решаю такие задачи, поэтому не уверена.
Заранее спасибо
Автор: tig81 11.11.2008, 18:11
Цитата(user @ 11.11.2008, 12:03)

Здравствуйте.
Вы не могли бы проверить, правильно ли я решила задачу:
Решить задачу графическим способом. Найти такие значения действительных переменных x1 и x2, для которых целевая функция Q(x1,x2) принимает минимальное значение:
1) 2x1+x2<=4
x2>=0
4x1+x2>=4
У меня получилось: функция достигнет своего минимального значения в точке (1;0)
х1 тоже неотрицательно? Вроде да
Цитата
Двойственная задача
Q=4y1-4y2->min
2y1-4y2>=-1
y1-y2<=-2
почему двойственная на минимум, раз исходная на минимум. Т.к. исходная задача на мининмум, то ее надо привести к каноническому виду, т.е. все неравенства должны быть вида "больше равно". Для первого это не выполняется.
Цитата
2)2x1+x2<=4
x1>=0
x1+2x2>=2
Q(x1,x2)=2x1+x2
У меня получилось: функция достигнет своего минимального значения в точке (0;2)
у меня не так.
Двойственная задача
Цитата
Q=4y1-2y2->min
2y1-y2>=-2
y1-2y2<=-1
первый раз решаю такие задачи, поэтому не уверена.
Заранее спасибо
Аналогично
Автор: user 11.11.2008, 18:42
Я просто смотрела по примеру и так поняла (наверное, неправильно), что прямую задачу сначала нужно привести к максимуму.
Тогда получится так:
1)-2y1+4y2<=1
-y1+y2>=2
Q=-4y1+4y2->max
2) -2y1+y2<=2
y1+2y2>=1
Q=-4y1+2y2->max
Так??
Автор: tig81 11.11.2008, 18:45
Цитата(user @ 11.11.2008, 20:36)

Я просто смотрела по примеру и так поняла (наверное, неправильно), что прямую задачу сначала нужно привести к максимуму.
как приводили?
Посмотрите http://www.kgtu.runnet.ru/WD/TUTOR/lp/lp02.html, http://www.ccas.ru/mmes/educat/lab01/7/dwoystv.html, http://www.intuit.ru/department/mathematics/mathprog/5/2.html, http://first.boom.ru/Products/Theory/twiced.htm и наконец http://www.mathelp.spb.ru/book1/lprog5.htm.
Автор: user 11.11.2008, 18:48
Спасибо. Теперь поняла.
Вы не посмотрите, я правильно потом решила?
Автор: user 11.11.2008, 19:03
1)-2y1+4y2=1
-y1+y2>=2
Q=-4y1+4y2->max
2) -2y1+y2<=2
y1+2y2=1
Q=-4y1+2y2->max
Автор: tig81 11.11.2008, 19:18
Цитата(user @ 11.11.2008, 20:42)

Тогда получится так:
1)-2y1+4y2<=1
-y1+y2>=2
Q=-4y1+4y2->max
Итак, имеем задачу
http://www.radikal.ru
Приводим систему ограничений к виду: неравенства "больше равно" (т.к. задача на минимум)
http://www.radikal.ru
Матрица
http://www.radikal.ru
Тогда получаем двойственную задачу: (т.к. на переменную х1 не накладывается никакого ограничения, то первое условие в системе огрнаничений будет равенством, x2>=0 - тогда второе ограничение неравенство):
http://www.radikal.ru
П.С. Вроде так.
Автор: user 26.1.2009, 18:38
Здравствуйте еще раз.
Мне преподаватель написал, что все неправильно. Помогите, пожалуйста, исправить.
Решить задачу графическим способом. Найти такие значения действительных переменных x1 и x2, для которых целевая функция Q(x1,x2) принимает минимальное значение:
2)2x1+x2<=4
x1>=0
x1+2x2>=2
Q(x1,x2)=2x1+x2
Я построила прямую 2x1+x2=4 по точкам (0;4) и (2;0) и прямую x1+2x2=2 по точкам (0;1) и (2;0)
у меня получился треугольник ABC (a(0;1), B(0;4), C(2;0)) - область допустимых решений
Взяла произвольную точку (1;1)? подставила ее координаты в функцию Q
получилось Q=3
Прямая уровня имеет вид: 2x1+x2=3
Направление убывания функции будет совпадать с вектором (2;1)=> функция достигнет своего минимального значения в точке A(0;1)
И двойственная задача тоже неправильно найдена. Подскажите, пожалуйста, где я ошиблась.
Заранее спасибо.
Автор: tig81 26.1.2009, 22:00
Цитата(user @ 26.1.2009, 20:38)

Я построила прямую 2x1+x2=4 по точкам (0;4) и (2;0) и прямую x1+2x2=2 по точкам (0;1) и (2;0)
у меня получился треугольник ABC (a(0;1), B(0;4), C(2;0)) - область допустимых решений
Область будет не треугольник, т.к. на переменную х2 не накладывается условие неотрицательности.
Цитата
Взяла произвольную точку (1;1)?
почему именно эту точку? Для прямой уровня или это оптимальный план?
Цитата
Направление убывания функции будет совпадать с вектором (2;1)
это как?
Цитата
функция достигнет своего минимального значения в точке A(0;1)
Получается, что функция достигает минимум на прямой x1+2x2=2, а значит и в любой точке этой прямой, т.е. и в т.A(0;1), причем Qmin=1.
А какая двойственная задача получилась?
Автор: user 26.1.2009, 22:12
Спасибо.
Цитата
Область будет не треугольник, т.к. на переменную х2 не накладывается условие неотрицательности.
т.е. будет треугольник, а также нижняя область между двумя прямыми?
Цитата
почему именно эту точку? Для прямой уровня или это оптимальный план?
Ну я смотрела алгоритм решения и делала, как там. Взяла произвольную точку для нахождения прямой уровня
Цитата
Получается, что функция достигает минимум на прямой x1+2x2=2, а значит и в любой точке этой прямой, т.е. и в т.A(0;1), причем Qmin=1.
Я вот этого немного не поняла. Так я правильно нашла минимум?
Цитата
А какая двойственная задача получилась?
-2y1+y2<=2
-y1+2y2<=1
-4y1+2y2->max
Автор: tig81 26.1.2009, 22:32
Цитата(user @ 27.1.2009, 0:12)

т.е. будет треугольник, а также нижняя область между двумя прямыми?
будет "треугольник", но только он не будет ограничен осью Оу. Вроде так.
Цитата
Ну я смотрела алгоритм решения и делала, как там. Взяла произвольную точку для нахождения прямой уровня
ясно
Цитата
Я вот этого немного не поняла. Так я правильно нашла минимум?
ну вы минимум не указали, а точку нашли правильно. Только в этой задаче получается, что она имеет бесконечно много оптимальных планов, т.к. минимум достигается не в одной точке области допустимых решений, а на целой ее границе.
Цитата
-2y1+y2<=2
-y1+2y2<=1
-4y1+2y2->max
Т.к. на переменную х2 не накладывается никакого условия, то второе неравенство в системе орграничений двойственной задачи будет равенством. Т.к. ограничения исходной задачи неравенства, то переменные двойственной задачи будут неотрицательные. Поэтому двойственная задача вроде будет такой:
Q*=-4y1+2y2->max
-2y1+y2<=2
-y1+2y2<=1
y1,y2>=0
П.С. Надеюсь, что на ночь глядя ничего не напутала. Если что, то поправьте , пожалуйста.
Скачайте еще книгу http://listlib.narod.ru/vichteh/aAkulich.html и посмотрите там. Вроде доходчиво написана, рассмотрены примеры.
Автор: user 26.1.2009, 22:39
Спасибо
Цитата(tig81 @ 26.1.2009, 22:28)

будет "треугольник", но только он не будет ограничен осью Оу. Вроде так.
Не поняла. x1 - только положительные, вроде будет ограничен ox2? а т.к. x2 может принимать отрицательные значения, то я так понимаю, снизу не ограничено. Или нет?
Цитата(tig81 @ 26.1.2009, 22:28)

ну вы минимум не указали, а точку нашли правильно. Только в этой задаче получается, что она имеет бесконечно много оптимальных планов, т.к. минимум достигается не в одной точке области допустимых решений, а на целой ее границе.
т.е. функция достигнет своего минимального значения в точке Q(0;1)=1?
Цитата(tig81 @ 26.1.2009, 22:28)

Т.к. на переменную х2 не накладывается никакого условия, то второе неравенство в системе орграничений двойственной задачи будет равенством. Т.к. ограничения исходной задачи неравенства, то переменные двойственной задачи будут неотрицательные. Поэтому двойственная задача вроде будет такой:
Q*=-4y1+2y2->max
-2y1+y2<=2
-y1+2y2<=1
y1,y2>=0
П.С. Надеюсь, что на ночь глядя ничего не напутала. Если что, то поправьте , пожалуйста.
Двойственная вроде так, только я тоже боюсь ошибиться=))
И еще я когда брала произвольную точку (1;1) получилось Q=3
Прямая уровня имеет вид: 2x1+x2=3
А у меня это все перечеркнуто почему-то и точка моя зачеркнута была=((
Автор: tig81 27.1.2009, 16:05
Цитата(user @ 27.1.2009, 0:39)

Не поняла. x1 - только положительные, вроде будет ограничен ox2? а т.к. x2 может принимать отрицательные значения, то я так понимаю, снизу не ограничено. Или нет?
ну так тяжела вокруг да около, сможете файлик прикрепить с областью, которую описываете?!
Цитата
т.е. функция достигнет своего минимального значения в точке Q(0;1)=1?
тут у вас смешались и кони и люди, т.к. Q(0;1)=1 - это не точка.
Цитата
Двойственная вроде так, только я тоже боюсь ошибиться=))
Цитата
И еще я когда брала произвольную точку (1;1) получилось Q=3
Прямая уровня имеет вид: 2x1+x2=3
А у меня это все перечеркнуто почему-то и точка моя зачеркнута была=((
тяжело сказать, что имелось в виду
Автор: user 27.1.2009, 16:32
Цитата(tig81 @ 27.1.2009, 16:05)

тут у вас смешались и кони и люди, т.к. Q(0;1)=1 - это не точка.
т.е. в этой точке функция принимает минимальное значение
Цитата(tig81 @ 27.1.2009, 16:05)

тяжело сказать, что имелось в виду
А так вроде правильно?
Автор: tig81 27.1.2009, 17:23
Цитата(user @ 27.1.2009, 18:32)

т.е. в этой точке функция принимает минимальное значение
т.е. в точке (0;1) функция апринимает мин значение
Цитата
А так вроде правильно?
вроде да, если сама "не напахала"
Автор: user 27.1.2009, 17:26
Спасибо большое за помощь=)))
Автор: tig81 27.1.2009, 17:32
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)