Автор: WhoLee 5.11.2008, 19:04
имеются пределы.
1) lim (x->+inf) (x - sqrt(2x^2 - 1))
неопределенность вида [inf - inf]
Можно привести к виду [0\0]
обозначаем t=1\x, получаем следующий предел:
lim(t->0) (1\t - sqrt(2\t^2 -1)), приводя выражение к общему знаменателю, получаем:
lim(t->0) ((1 - t*sqrt(2\t^2 -1))\t, далее видим, что в числителе единица, а в знаменателе ноль => lim=inf. Чувствую, что ошибка, но не пойму в чём.
2) lim(x->+inf) (x+1)\(x-1+sqrt(x+2))
Если разделить и числитель, и знаменатель на x, получим, что lim=1\1=1. Как-то странно получается. Нигде ничего не нашёл про предел отношения степенных многочленов. Можно ли в данном случае делить?
3) lim(x->pi) (1-sin(x\2))\pi - x
Здесь вводим a=x-pi => a->0, получаем
lim(a->0) (1-sin((a+pi)\2))\a, приводя получаем далее lim(a->0) (1-cos(a\2))\a = a^2 \ 4a = 0
Насчёт второго и третьего пределов интересно узнать - правильно ли я их решил?
Заранее спасибо.
Автор: tig81 5.11.2008, 19:19
Цитата(WhoLee @ 5.11.2008, 21:04)

имеются пределы.
1) lim (x->+inf) (x - sqrt(2x^2 - 1))
неопределенность вида [inf - inf]
Можно привести к виду [0\0]
обозначаем t=1\x, получаем следующий предел:
lim(t->0) (1\t - sqrt(2\t^2 -1)), приводя выражение к общему знаменателю, получаем:
lim(t->0) ((1 - t*sqrt(2\t^2 -1))\t, далее видим, что в числителе единица, а в знаменателе ноль => lim=inf. Чувствую, что ошибка, но не пойму в чём.
у меня получилось -inf.
lim(x->+inf)(x - sqrt(2x^2 - 1))=lim(x->+inf)[x(1-sqrt(2-1/x^2))=-00
Цитата
2) lim(x->+inf) (x+1)\(x-1+sqrt(x+2))
Если разделить и числитель, и знаменатель на x, получим, что lim=1\1=1. Как-то странно получается. Нигде ничего не нашёл про предел отношения степенных многочленов. Можно ли в данном случае делить?
Да, 1. можно. Посмотрите примеры http://www.reshebnik.ru/solutions/1/
Цитата
3) lim(x->pi) (1-sin(x\2))\pi - x
Здесь вводим a=x-pi => a->0, получаем
lim(a->0) (1-sin((a+pi)\2))\a, приводя получаем далее lim(a->0) (1-cos(a\2))\a = a^2 \ 4a = 0
В знаменателе вроде -а должно получиться.
ВЫделенное красным не поняла.
Ответ 0.
Автор: WhoLee 5.11.2008, 19:39
Цитата(tig81 @ 5.11.2008, 22:19)

у меня получилось -inf.
lim(x->+inf)(x - sqrt(2x^2 - 1))=lim(x->+inf)[x(1-sqrt(2-1/x^2))=-00
Да, 1. можно. Посмотрите примеры http://www.reshebnik.ru/solutions/1/
В знаменателе вроде -а должно получиться.
ВЫделенное красным не поняла.
Ответ 0.
Спасибо огромное! А насчёт красного:
1-cos(a\2) ~ (a\2)^2 - получаем a^2 \ 4a.
Автор: tig81 5.11.2008, 19:41
Цитата(WhoLee @ 5.11.2008, 21:39)

1-cos(a\2) ~ (a\2)^2 - получаем a^2 \ 4a.
а, точно.