Великие гуру! Помогите пожалуйста с задачей. На заочке учусь, не могу у препода спросить, я его только на сессии увижу.
Собственно только только начал изучать. Из условия половину не понял. Прошу не посылать в свободное плавание. А растолкуйте мне как детёнку малому, по пунктам, что тут конкретно от меня хотят и как это решать. У меня тут под рукой куча учебников, я уже в них во всех запутался. Более менее понятно для меня излагает Гельфанд, но легче не становится.
В общем условие:
Образует ли линейное векторное пространство над полем вещественных чисел R заданное множество V, для которого определены сумма любых двух элементов a, b ∈ V и произведение любого элемента a ∈ V на любое число a ∈ R?
множество всех вещественных многочленов степеней, не превосходящих 3, от двух переменных x и y относительно обычных операций сложения многочленов и умножения многочлена на число.
http://www.reshebnik.ru/solutions/10/1/.
Что значит
Любая линейная комбинация элементов пространства должна принадлежать этому же пространству. Если рассматривается совокупность многочленов степени в точности n, то, очевидно, существуют линейные комбинации таких многочленов, в результате которых получаются многочлены степени меньше n. То есть они уже не принадлежат совокупности => она не образует линейного пространства.
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)