Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Теория вероятностей _ Проверьте, пожалуйста, задачу

Автор: Freewill 25.3.2012, 10:26

Задача. Цех изготавливает изделия. Каждое изделие имеет дефект с p=0,1. Изделие осматривает контролер, который обнаруживает дефект с p=0,9. Если дефект не обнаружен, то изделие готово. Контролер может ошибиться с p=0,1. Найти вероятность того, что изделие будет забраковано.

Решение. По теореме умножения вероятностей:

p=0,1*0,9*0,1=0,009.

Автор: Руководитель проекта 25.3.2012, 10:30

Неверно. Необходимо воспользоваться формулой полной вероятности.

Автор: Freewill 25.3.2012, 10:53

По формуле полной вероятности:

А-событие "изделие забраковано"
B1=B2-событие "изделие имеет дефект" P(B1)=P(B2)=0,1.
Pb1(A)=0,9
Pb2(A)=0,1

P(A)=0,1*0,9+0,1*0,1=0,09+0,01=0,1

Так надо рассуждать?)

Автор: Freewill 25.3.2012, 11:24

Помогите, пожалуйста, еще с 2мя задачами, я их по очереди выписывать буду.

Задача 2. Студент разыскивает нужную ему формулу в 3х справочниках. Вероятность, что формула содержится в
1м справочнике: 0,6
2м справочнике: 0,7
3м справочнике: 0,8
Найти вероятность того, что формула содержится только в одном справочнике.

Решение. По теореме появления хотя бы одного события:

p=1-(1-0,6)*(1-0,7)*(1-0,8)=1-0,4*0,3*0,2=1-0,024=0,976


Автор: malkolm 25.3.2012, 12:27

Цитата(Freewill @ 25.3.2012, 17:53) *

По формуле полной вероятности:

А-событие "изделие забраковано"
B1=B2-событие "изделие имеет дефект" P(B1)=P(B2)=0,1.

Выясните, кто такие B1, B2 и т.д. в формуле полной вероятности. То есть что такое полная группа событий.

Цитата(Freewill @ 25.3.2012, 18:24) *

Найти вероятность того, что формула содержится только в одном справочнике.

Решение. По теореме появления хотя бы одного события:

"Только в одном" и "Хотя бы в одном" - одно и то же? "У Вас только одна сотня в кармане" то же самое, что "у Вас есть хотя бы одна сотня в кармане"?

Автор: Freewill 29.3.2012, 9:53

Задача 1.Цех изготавливает изделия. Каждое изделие имеет дефект с p=0,1. Изделие осматривает контролер, который обнаруживает дефект с p=0,9. Если дефект не обнаружен, то изделие готово. Контролер может ошибиться с p=0,1. Найти вероятность того, что изделие будет забраковано.

По формуле полной вероятности:

А-событие "изделие забраковано"
B1-событие "Контролер обнаружил дефект" P(B1)=0,9
B2-событие "Контролер ошибся" P(B2)=0,1

P(A)=0,9*0,1+0,1*0,1=0,09+0,01=0,1

------------------------------------------------------------------------------------------------------------------------------

Задача 2. Студент разыскивает нужную ему формулу в 3х справочниках. Вероятность, что формула содержится в
1м справочнике: 0,6
2м справочнике: 0,7
3м справочнике: 0,8
Найти вероятность того, что формула содержится только в одном справочнике.

A- событие "Формула содержится только в первом справочнике"
B-событие "Формула содержится только во втором справочнике"
С-событие "Формула содержится только в третьем справочнике"

По теореме умножения вероятностей:
P(A)=0,6*0,3*0,2=0,036
P( B )=0,7*0,4*0,2=0,056
P( C )=0,8*0,4*0,3=0,096

По теореме сложения несовместных событий:
P(A+B+C)=0,036+0,056+0,096=0,188

Подскажите, правилен ли ход решения и ответы?

Автор: Freewill 29.3.2012, 14:42

Задача 3. Для повышения надежности правильного приема сигнала используется метод накопления:

-Каждый символ передается 4 раза подряд.
-Считается, что каждый прием имеет место тогда, когда в каждой пачке из 4х символов не менее 2х считаются одинаковыми.

Определить вероятность правильного приема, если вероятность правильного приема символа равна 0,5.

Решение. По формуле Бернулли:
4!/(2!*(4-2)!)*(0,5^2)*(0,5^2)=0,375

И эту проверьте, пожалуйста, мне очень срочно: huh.gif huh.gif huh.gif .

Автор: malkolm 29.3.2012, 15:03

Цитата(Freewill @ 29.3.2012, 16:53) *

А-событие "изделие забраковано"
B1-событие "Контролер обнаружил дефект" P(B1)=0,9
B2-событие "Контролер ошибся" P(B2)=0,1

То, что Вы пишете - это вообще не события. Вы так и не прочли, что за события B1, B2, ... участвуют в формуле полной вероятности? И ответ неверен.

Вторая верно.
Условие третьей мне непонятно. Но в любом случае в третьей Вы нашли вероятность ровно двух успехов из четырёх. А интересующее Вас событие - что наступит не менее двух успехов. Какие ещё варианты возможны?

Автор: Freewill 29.3.2012, 15:45

Спасибо за помощь)))).
Задача 1.
Я прочитал, что B1,B2,... образуют полную группу событий (в результате опыта появляется только одно из них). И что они должны произойти, чтобы произошло событие A. В моем мозгу появляется следующее:
Сначала деталь должна быть с дефектом (p=0,1) или без дефекта (p=0,9). Затем ее осматривает контролер и она будет забракована в случае если:
Деталь с дефектом и контролер обнаружил (0,1*0,9)
Деталь без дефекта и контролер ошибся (0,9*0,1)
0,09+0,09=0,18
Пока это все, что могу надумать)

Задача 3.
2 успеха из 4х: 4!/(2!*(4-2)!)*(0,5^2)*(0,5^2)=0,375
3 успеха из 4х: 4!/(3!*(4-3)!)*(0,5^3)*(0,5^1)=0,25
4 успеха из 4х: 4!/(4!*(4-4)!)*(0,5^4)*(0,5^0)=0,0625

0,375+0,25+0,0625=0,6875


Автор: malkolm 29.3.2012, 19:59

Ну вот видите, стоило прочитать определение и начать думать, все стало верно и разумно smile.gif Обе задачи верно.

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)