Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Теория вероятностей _ Задача на вычисление мат. ожидания и дисперсии

Автор: Babeuf 28.1.2012, 17:52

У нас есть множество цифр от {1…39} и из этих элементов выбираем случайным образом цифры «методом выбора с отказом» с помощью симметричной монеты (вероятность выпадения Герба (Г) = ½, вероятность выпадения Решки (Р) = ½).
НАЙТИ: среднее время до первого броска $E$ - ?, и дисперсию $D$ -?
E — мат. ожидание
D — дисперсия

Я понял это примерно так:
Пусть Г=1, Р=0, тогда выбираем ближайшую степень 2-йки, т. е. 6. И если мы выбросили:

ГГРРГР — 110010 — 26
И мы его тут же берем, и выборы заканчиваются.

Правильно ли я понимаю условие задачи? И если я прав, то как распределана случайная величина, от которой надо искать E, D - ?

Автор: malkolm 28.1.2012, 18:14

Приведите ТОЧНУЮ исходную формулировку задачи.

Автор: Babeuf 28.1.2012, 18:33

Цитата(malkolm @ 28.1.2012, 22:14) *

Приведите ТОЧНУЮ исходную формулировку задачи.


Пожалуйста: "Методом выбора с отказами выбираем случайный элемент из 39 штук с помощью симметричной монетки (1/2). Найти E, D числа бросков — ?"

Автор: malkolm 28.1.2012, 21:21

Я полагаю, что следует в своих лекциях отыскать, что преподаватель понимает под методом выбора с отказами. Ни мне, ни гуглу такой термин неизвестен.

Автор: Руководитель проекта 29.1.2012, 7:12

Цитата(Babeuf @ 28.1.2012, 21:52) *

У нас есть множество цифр чисел от {1…39}...

Насколько я помню, у нас всего 10 цифр (в десятичной системе счисления).

Автор: Babeuf 29.1.2012, 8:26

У нас есть множество чисел {1…39} и из этих элементов выбираем случайным образом числа с помощью симметричной монеты (вероятность выпадения Герба (Г) =1/2, вероятность выпадения Решки (Р) =1/2).
НАЙТИ: среднее время до первого выбора E - ?, и дисперсию D -?
— мат. ожидание
— дисперсия

Я начал решать так:
Пусть Г=1, Р=0, тогда выбираем ближайшую степень 2-йки — 6, т. е. , бросаем монету 6 раз и получаем некоторую последовательность состоящую из гербов и решек. Эту последовательность можно понимать, как двоичный код некоего числа. Если это число входит в набор, то мы его берем, и процесс выбора заканчивается. Если это число не попадает в промежуток от {1…39} до, тогда повторяем снова все броски. И нужно сосчитать среднее время до выбора первого элемента из множества

Например, у нас выпало:
ГГРРГР, тогда это код: 110010, и следовательно это число 26
И мы его тут же берем, и выборы заканчиваются.

Вот суть задачи

Автор: malkolm 29.1.2012, 9:20

Цитата(Babeuf @ 29.1.2012, 15:26) *

Пусть Г=1, Р=0, тогда выбираем ближайшую степень 2-йки, т. е. , бросаем монету раз и получаем некоторую последовательность состоящую из гербов и решек.

Если бросить "монету раз", получится 0 или 1, а не последовательность гербов и решек...


Интересно, а если здесь тоже пригрозить перемещением в карантин как на дхду, автор соизволит исправить "монету раз" на то, что должно быть?

Автор: Babeuf 29.1.2012, 9:21

Цитата(malkolm @ 29.1.2012, 13:20) *

Если бросить "монету раз", получится 0 или 1, а не последовательность гербов и решек...
Интересно, а если здесь тоже пригрозить перемещением в карантин как на дхду, автор соизволит исправить "монету раз" на то, что должно быть?


Извините, шесть раз, конечно же.

Автор: malkolm 29.1.2012, 9:25

Тогда понятно наконец. Метод называется "acception-rejection", и на русский адекватно не переводится.
Какое распределение имеет количество бросаний шести монет до первого удачного бросания?

Автор: Babeuf 29.1.2012, 10:05

Цитата(malkolm @ 29.1.2012, 13:25) *

Тогда понятно наконец. Метод называется "acception-rejection", и на русский адекватно не переводится.
Какое распределение имеет количество бросаний шести монет до первого удачного бросания?


Спасибо!

Автор: malkolm 29.1.2012, 11:23

"Спасибо, да", или "спасибо, нет"? smile.gif Так какое распределение? Ещё раз: это НЕ биномиальное распределение.

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)