Найти область сходимости ряда:
ряд n/(n^2+4) * ((x+2)/(2x+1))^n
Я заменил через q выражение ((x+2)/(2x+1)) и исследовал как степенной ряд, но преподаватель сказал, что это не степенной ряд, помогите пожалуйста, я не могу его исследовать, а без него мне не засчитают целую тему и время поджимает
спасибо, venja, подскажите пожалуйста как еще показать что на граничной точке (-1) ряд сходится, а на (1) ряд расходится) заранее благодарен
Подставьте вместо х границы интервала (-1) и 1. Далее исследуйте два получившихся ряда. После чего примите решение.
Удобнее записать общий член ряда в виде
а(n) * q^n
где
а(n)=1/[n+(4/n)]
при q=1 получается получается числовой ряд
(сумма) а(n)
Этот ряд расходится - его можно сравнить (в предельной форме) с гармоническим рядом (сумма) 1/n.
при q= -1 получается получается числовой ряд
(сумма) (-1)^n *а(n)
Этот знакочередующийся ряд сходится по признаку Лейбница,
так как несложно показать монотонный характер убывания (к нулю) последовательности а(n).
venja, напиши пожалуйста как во втором случае показать монотонную сходимость к нулю. Я ищу производную, у меня получатся нули
Для этого достаточно показать, что последовательность
b(n)=n+(4/n)
монотонно возрастает.
b(n+1) - b(n)=n+1+4/(n+1) -n-4/n =1-4/[n(n+1)]>0
по крайней мере начиная с n=2.
спсибо, уже скока раз выручаете))))))))))))))
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)