Из 12 монет 1 фальшивая, неизвестно, легче она или тяжелее. Надо ее найти за 3 взвешивания.
У кого-нибудь получается?
Делим на 3 группы по 4 монеты, сравниваем 2 группы;
Если = то фальш в 3 группе, делим ее на 2 группы по 2 монеты,
сравниваем 1 группу с 2 настоящими монетами, если отличается по
весу то фальш там, если нет то в другой; с 2 монетами аналогично.
Если <> то тяжелую группу называем а, легкую б; сравниваем
(а1 а2 б1 б2) и (а3 б3 норма норма)
>фальш а1, а2 или б3 : сравниваем а1 и а2
<фальш б1, б2 или а3 : сравниваем б1 и б2
=фальш а4 или б4 : сравниваем а4 с настоящей монетой.
Значит только я бестолковая такая.
Спасибо, РП, за поддержку.
Значит, она еще и простейшая...
Вы начали вести методы оптимизации?
Есть раздел «Целочисленное программирование». Эту задачу можно как раз отнести туда. Как пример по методу ветвей и границ. Только обычно я беру как простой и понятный пример задачу на 8 (или 9) монет и 2 взвешивания.
Нет, это не оттуда - дочке в школе задали. Поэтому и решать пыталась по-детски. Сразу не получилось и терпения не хватило.
Спасибо.
Я не возражаю, что задачка школьная.
Школьная говорите?
http://www.computerra.ru/offline/1997/228/969/
http://dxdy.ru/topic745.html#3700
Моему знакомому при поступлении в спец школу 1-й класс с языковым уклоном такую давали
Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)