Версия для печати темы

Нажмите сюда для просмотра этой темы в обычном формате

Образовательный студенческий форум _ Теория вероятностей _ проверьте пожалуйста

Автор: leya 23.4.2011, 11:30


2) распределение случайной величины кси задано таблицей
k -3 -1 0 1
Pк 1/5 1/5 2/5 1/5
вычислить мат.ожидание кси
дисперсию кси
энтропию кси
и распределение n=(кси-1)^4


мат.ожидание кси = -3*1/5+-1*1/5+0+1*1/5 (могу ли я вычислять по этой формуле если таблица у меня не от кси?)

Автор: malkolm 23.4.2011, 14:56

Непонятен вопрос. Матожидание кси записано верно.

Автор: leya 23.4.2011, 16:52

но ведь таблица мне дана не от кси...а от к?
или это не имеет значения?

Автор: leya 23.4.2011, 17:03

ммм ну если это не имеет значения тогда мат. ожидание равно -3\5
для дисперсии ищем мат ожидания для квадрата
для этого переписываем таблицу исходную для квадратов...
и в итоге
дисперсия=11\5-9\25=1.84

правильно?

насчет энтропии я запуталась...там много формул для нее я не знаю какая подойдет именно сюда...выбираю между двумя(

а энтропия=-1\5*log(2)1\5-1\5*log(2)1\5-1\5*log(2)1\5-2\5*log(2)2\5=1.91
или она рассчитывается по формуле
-мат.ожидание* сумму(натуральный логарифм от p) и тогда это будет - 3.44...

Автор: leya 23.4.2011, 17:39

а для распределения

у нас будет таблица

n 0 1 16 256

p 1\5 2\5 1\5 1\5

или она как то по хитрому строится...
просто я подставила в формулу вместо кси значения...
и рассчитала 4 значения n а потом нарисовала что то вроде графика...
и соединила стрелками какая вероятность какому значению стала соответствовать...

Автор: venja 24.4.2011, 2:19

Цитата(leya @ 23.4.2011, 22:52) *

но ведь таблица мне дана не от кси...а от к?
или это не имеет значения?


Это, думаю, опечатка. Должно стоять кси.

Цитата(leya @ 23.4.2011, 23:39) *

а для распределения

у нас будет таблица

n 0 1 16 256

p 1\5 2\5 1\5 1\5



верно

Автор: leya 24.4.2011, 6:52

а энтропию по какой формуле считать?

Автор: malkolm 24.4.2011, 11:07

Цитата(leya @ 23.4.2011, 23:52) *

но ведь таблица мне дана не от кси...а от к?
или это не имеет значения?

А таблица всегда от k. Или от j. Или от a_m. Или от x_n. В таблице перечисляются возможные значения случайной величины, не важно какой буквой обозначенные. А снизу - вероятности принимать эти значения.

Энтропия - минус сумма вероятностей, умноженных на двоичные логарифмы тех же вероятностей. Так что в первый раз Вы её посчитали верно. Ну и распределение величины "эта" тоже нашли верно.

Автор: leya 24.4.2011, 16:09

спасибо большое)))

а у меня еще 2 задачи есть...)))

1)прямые разбивают плоскость на равносторонние треугольники со стороной 16 определить вероятность того что монета диаметра 2 наугад брошенная на плоскость не пересечет ни одной прямой

вот мои мысли про нее...

не знаю как оформить потому что она больше интуитивно решена...

пусть А - событие состоящее в том что брошенная на плоскость монета радиуса 1 не пересечет ни одну из сторон треугольника
областью является треугольник со стороной 16 т.е может занимать центр данного круга...
определим w как препятств. возникновению события А т.е. как треугольник со сторонами 14 который может занимать центр данного круга...

m(oбщее)=110.85
m(w)=84.87
p(A)=0.76

Автор: leya 24.4.2011, 16:32

вот а вторая задача
3) дана функция распределения абсолютно непрерывной случайной величины кси
F(x)=0, x<=0
Cx^2,x принадлежащем (0,5]
1,x>5
найти С
мат.ожидание кси
дисперсию кси
энтропию кси
и распределение n=1/кси


здесь я совсем не уверена в формулах...вот допустим константу я нахожу как-


так я вот тут напутала...мне же нужно еще рассчитать
0,x<=0
p(x) 2Cx, принадлежащем (0,5]
а вот от 1....производная же 0....то есть еще будет 0, x>5

и отсюда уже все это выражать...

интеграл(от минус бесконечности до +беск.) p(x)dx=1
интеграл(от -беск. до 0)0dx+интеграл(от 0 до 5) 2сxdx+интеграл(от 5 до +беск.)0dx=
отсюда С=1\25

Мат ожидание = 10\3
мат ожидание от x^2=12.5
а дисперсия у меня получилась 25\18

а насчет энтропии и распределения я пока еще думаю...

Автор: leya 24.4.2011, 17:24

для распределения...ну вот как я понимаю...
p(1\кси<x)=p(кси>1\x)

а дальше не знаю...

а энтропия...
опять же если я правильно взяла формулу....
=интеграл(от 0 до 5) 2\25*x*log(2)2\25*xdx=2.04

Автор: malkolm 24.4.2011, 19:48

Цитата(leya @ 24.4.2011, 23:09) *

областью является треугольник со стороной 16 т.е может занимать центр данного круга...
определим w как препятств. возникновению события А т.е. как треугольник со сторонами 14 который может занимать центр данного круга...

Чтобы монета не пересекла стороны треугольника, её центр долен упасть не ближе, чем на 1 см от стороны. Это, по-моему, треугольник со сторонами никак не 14. Проведите внутри большого треугольника линии на расстоянии 1 см от его сторон.



Цитата(leya @ 24.4.2011, 23:32) *

мне же нужно еще рассчитать
0,x<=0
p(x) 2Cx, принадлежащем (0,5]
а вот от 1....производная же 0....то есть еще будет 0, x>5

и отсюда уже все это выражать...

И зачем, интересно, нужна плотность для вычисления С? Прочтите задачу: дана функция распределения абсолютно непрерывной случайной величины. Как минимум, отсюда следует непрерывность её функции распределения. Откуда и находится С.



Цитата(leya @ 25.4.2011, 0:24) *

для распределения...ну вот как я понимаю...
p(1\кси<x)=p(кси>1\x)

а дальше не знаю...

а энтропия...
опять же если я правильно взяла формулу....
=интеграл(от 0 до 5) 2\25*x*log(2)2\25*xdx=2.04

А дальше - выразить эту вероятность через функцию распределения, и всё. Энтропия - верно, а вычисления проверять лень.

Автор: leya 25.4.2011, 5:51

Цитата(malkolm @ 24.4.2011, 19:48) *


И зачем, интересно, нужна плотность для вычисления С? Прочтите задачу: дана функция распределения абсолютно непрерывной случайной величины. Как минимум, отсюда следует непрерывность её функции распределения. Откуда и находится С.



ну у нас же F это первообразная....а когда мы находим С нам же нужно f...
разве нет?

Автор: leya 25.4.2011, 6:05

Цитата(malkolm @ 24.4.2011, 19:48) *

Чтобы монета не пересекла стороны треугольника, её центр долен упасть не ближе, чем на 1 см от стороны. Это, по-моему, треугольник со сторонами никак не 14. Проведите внутри большого треугольника линии на расстоянии 1 см от его сторон.


эх...у меня получилось 13 см треугольник....

m(общее)=110.85
m(w)= 73.17
p(a)=0.66

Автор: malkolm 25.4.2011, 9:33

Цитата(leya @ 25.4.2011, 12:51) *

ну у нас же F это первообразная....а когда мы находим С нам же нужно f...
разве нет?

Функция распределения абсолютно непрерывного закона распределения непрерывна. Это свойство Вам знакомо? График F рисуем или иным способом смотрим на неё и делаем её непрерывной выбором С.

Цитата(leya @ 25.4.2011, 13:05) *

эх...у меня получилось 13 см треугольник....

m(общее)=110.85
m(w)= 73.17
p(a)=0.66

Нет, не 13. Не знаю, как Вы там что вычисляете. Длина стороны маленького треугольника должна быть 16-2*sqrt(3).


Автор: leya 25.4.2011, 13:08

Цитата(malkolm @ 25.4.2011, 9:33) *

Нет, не 13. Не знаю, как Вы там что вычисляете. Длина стороны маленького треугольника должна быть 16-2*sqrt(3).


точно не 13 я согласна уже сама...но чет я теперь начала через геометрию считать...
и у меня получается ровно 12 а не 12.5 как по вашей формуле....

ну я как рассуждаю)))) равносторонний треугольник....все углы 60 градусов....проводим высоту....по теореме пифагора....она = 8 корней из трех...

так как по 1 см отступаем от каждой стороны....то мы можем из 8sqrt3 вычесть 2 и получить высоту нового треугольника.... (единственное меня вот тут смущает...то что я по сути от вершины 1 см убираю...и видимо здесь неправильно получается...)

в котором мы знаем эту высоту....и то что углы в нем все также 60 градусов...
и опять же составляем теорему пифагора.... x^2=1\4x^2+108
в итоге x = 12....

это очень неправильно? просто мне уже интересно(((

эххх...если брать по формуле которую написали вы...

то мы получаем

m(общее)=110.85
m(w)= 68
p(a)=0.61


Автор: leya 25.4.2011, 13:27

Цитата(malkolm @ 25.4.2011, 9:33) *

График F рисуем или иным способом смотрим на неё и делаем её непрерывной выбором С.



если мы рисуем график....

у нас получается до 0 прямая по х....потом кусочек параболки для которой мы ищем с...и потом прямая в единице...

ну вот С по рисунку получается все равно 1\25....
потому что если подставим х=0 получим 0 по у...
если подставим х=5....получим 1 по у....

через плотность просто в принципе нельзя считать? или я и сейчас неправильно думаю?....
просто там же все равно и для мат. ожидания и дисперсия нужна плотность...почему бы и с через нее не найти...


Автор: malkolm 25.4.2011, 14:52

Цитата(leya @ 25.4.2011, 20:08) *

так как по 1 см отступаем от каждой стороны....то мы можем из 8sqrt3 вычесть 2 и получить высоту нового треугольника.... (единственное меня вот тут смущает...то что я по сути от вершины 1 см убираю...и видимо здесь неправильно получается...)

Именно. 1 см снизу, а разве сверху будет тоже 1 см???


Цитата(leya @ 25.4.2011, 20:27) *

если мы рисуем график....

у нас получается до 0 прямая по х....потом кусочек параболки для которой мы ищем с...и потом прямая в единице...

ну вот С по рисунку получается все равно 1\25....
потому что если подставим х=0 получим 0 по у...
если подставим х=5....получим 1 по у....

Да.
Цитата(leya @ 25.4.2011, 20:27) *

через плотность просто в принципе нельзя считать? или я и сейчас неправильно думаю?....
просто там же все равно и для мат. ожидания и дисперсия нужна плотность...почему бы и с через нее не найти...

Да можно, только это демонстрирует сразу и непонимание свойств функции распределения абсолютно непрерывного закона, и непонимание её связи с плотностью. (Например, мне как преподавателю. А думаете, Ваш преподаватель по-другому устроен? smile.gif)
Есть готовая ф.р. Вы сначала её дифференцируете, а потом снова интегрируете, чтобы приравнять интеграл к единице. Вместо того, чтобы к единице приравнять уже данную заранее первообразную.

Автор: leya 25.4.2011, 15:13

... то есть можно было сразу написать

сх^2 (пределы интегрирования от 0 до 5)= 1
?

Автор: leya 25.4.2011, 15:48

а откуда берется вот это?
Длина стороны маленького треугольника должна быть 16-2*sqrt(3)

вот мы описываем вокруг треугольника окружность ее радиус=(16\sin 60...)\2
потом вычитаем из радиуса 2 и получаем новый радиус....

то есть 2*(16\sqrt3-2)=2x\sqrt3
и в итоге
х=16-2 корня из трех
да?

Автор: leya 25.4.2011, 16:23

ммм так...а распределение...

вот у меня получается что p(кси>1/x)

то есть мне нужно вычислить интеграл

...от 1\х до +беск. (2сt) dt ? но это опять через плотности


или у меня еще есть предположение...не знаю насколько верное(

что для n F(x)
0,x<=0
-1\(25*x^3) при x от 0 до 5
0,х>5

Автор: malkolm 25.4.2011, 18:24

Цитата(leya @ 25.4.2011, 22:13) *

... то есть можно было сразу написать

сх^2 (пределы интегрирования от 0 до 5)= 1
?

Можно, но не нужно. Ещё раз: функция распределения у абсолютно непрерывного распределения НЕПРЕРЫВНА. Стало быть, в точке 5 должна быть такая же, как справа от неё, т.е. 1. Это и есть полное приращение первообразной от плотности.



Цитата(leya @ 25.4.2011, 22:48) *

а откуда берется вот это?
Длина стороны маленького треугольника должна быть 16-2*sqrt(3)

вот мы описываем вокруг треугольника окружность ее радиус=(16\sin 60...)\2
потом вычитаем из радиуса 2 и получаем новый радиус....

Ну например, так. Не знаю, тут всяк по-своему считать привык. Теоремы Пифагора вполне достаточно, чтобы посчитать все соотношения маленького треугольника и большого.

Цитата(leya @ 25.4.2011, 23:23) *

ммм так...а распределение...

вот у меня получается что p(кси>1/x)

то есть мне нужно вычислить интеграл

...от 1\х до +беск. (2сt) dt ? но это опять через плотности


Разве плотность равна 2ct до бесконечности??? Или до 5, а дальше нулю? В чём Вы правы, так это в том, что при готовой функции распределения снова заниматься интегрированием плотности - странно.

Цитата(leya @ 25.4.2011, 23:23) *

или у меня еще есть предположение...не знаю насколько верное(

что для n F(x)
0,x<=0
-1\(25*x^3) при x от 0 до 5
0,х>5

Не смущает отрицательность функции распределения? "И ничего, и ничего, и ничего...."?

Сделайте по этой задаче то, что выше советовано: выразить эту вероятность P(кси > 1/x) через функцию распределения.

Автор: leya 25.4.2011, 19:14

я не понимаю как я могу выразить неравенство через неравенство....

я же не могу подставить это вместо х...

можно на каком нибудь абстрактном примере хотя бы?...

Автор: malkolm 25.4.2011, 19:19

Хорошо. Выражаем одно через другое для совершенно произвольной случайной величины кси:
F(x) = P(кси ... ?)
F(7) = P(кси ... ?)
P(кси < 3) = ?
P(кси < z) = ?
P(кси >= z) = ?
P(кси >= 2) = ?
P(кси < 1/x) = ?
P(кси >= 1/x) = ?

Автор: leya 25.4.2011, 19:30

Цитата(malkolm @ 25.4.2011, 19:19) *

Хорошо. Выражаем одно через другое для совершенно произвольной случайной величины кси:


F(x) = P(кси < = x)
F(7) = P(кси <=7)


P(кси < 3) = F(x<3)


я по моему что то не то делаю...да?

Автор: malkolm 25.4.2011, 19:34

Цитата(leya @ 26.4.2011, 2:30) *

F(x) = P(кси = x)
F(7) = P(кси =7)
P(кси < 3) = F(x<3)
я по моему что то не то делаю...да?

Да. Не то. Откройте учебник и выучите определение функции распределения.

Автор: leya 25.4.2011, 19:43

Определение. Функцией распределения вероятностей, или просто функцией распределения (иногда применяют термин кумулятивная функция распределения) случайной величины , называется функция F(х), равная для любого значения x вероятности события кси<=x :

то есть F(х)=p(кси<=x)

а дальше я по аналогии пытаюсь делать...

Автор: malkolm 25.4.2011, 19:47

Ну тогда чуть изменю вопросы:

F(x) = P(кси ... ?)
F(7) = P(кси ... ?)
P(кси <= 3) = ?
P(кси <= z) = ?
P(кси > z) = ?
P(кси > 2) = ?
P(кси <= 1/x) = ?
P(кси > 1/x) = ?

Автор: leya 25.4.2011, 19:51

ну вот просто если в лоб...по аналогии

F(x) = P(кси <=x)
F(7) = P(кси <=7)
P(кси <= 3) = F(3)
P(кси <= z) = F(z)

P(кси <= 1/x) = F(1/X)
про эти сейчас еще поищу(((
P(кси > 1/x) = ?
P(кси > z) = ?
P(кси > 2) = ?

Автор: malkolm 25.4.2011, 19:53

Верно.

А как связаны события {кси <= 3} и {кси > 3}? И как поэтому связаны их вероятности?

Автор: leya 25.4.2011, 19:55

p(a<кси<b)=F( ( b )-F(a) вот если можно этим тут пользоваться то я бы делала так(

P(кси > 1/x) = -F(1/x)
P(кси > z) = -F(z)
P(кси > 2) = -F(2)

Автор: malkolm 25.4.2011, 19:59

ВЕРОЯТНОСТЬ НЕ БЫВАЕТ ОТРИЦАТЕЛЬНОЙ !

Автор: leya 25.4.2011, 20:12

не бывает(...
и от 0 до 1 оно(((

но там либо интервал p(a<кси<b)
либо неравенство(((

про больше ничего не могу найти

Автор: malkolm 25.4.2011, 20:14

Цитата(malkolm @ 26.4.2011, 2:53) *

Верно.

А как связаны события {кси <= 3} и {кси > 3}? И как поэтому связаны их вероятности?

???


Автор: leya 25.4.2011, 20:20


F(X)=1 при кси>=b

но это если интервал все равно...

ну я их могу связать только так что они происходят на всем интервале...от минус бесконечности до + бесконечности....

как связаны события {кси <= 3} и {кси > 3}? И как поэтому связаны их вероятности?

ну вот это тот самый интервал и есть(((

р(3<кси<=3)=f(3)-f(3)

по моему чушь(

Автор: malkolm 25.4.2011, 20:21

Вообще-то, чем по 10 раз повторять один и тот же совет, дожидаясь, покуда кто-то им воспользуется, я с гораздо большим удовольствием спать пойду... Четвёртый час на дворе, однако...

Как связаны следующие события:

A = {Вася курит}, B={Вася НЕ курит}?
A={Петя лысый}, B={Петя НЕ лысый}?
A={Очков ноль}, B={очков НЕ ноль}?
A={Попаданий меньше пяти}, B={попаданий НЕ меньше пяти}?
A={Кси больше трёх}, B={кси НЕ больше трёх}?

Знаете, кроме проблем с определениями и свойствами, вижу обычную проблему: попробуйте читать формулы вслух? Обязательно вслух! По нескольку раз, пока смысл формулы не станет понятен... Кроме всяких шуток.

Автор: leya 25.4.2011, 20:26

ну с васей понятно...он либо курит либо нет(((( то есть они не связаны?

либо одно событие....это отрицание другого

Автор: malkolm 25.4.2011, 20:28

Так. Открываем первый параграф курса, учебника, что есть. И читаем об операциях и соотношениях между событиями. Без этого жить нельзя. Элементарщину мы обсуждаем, без надежды на успех, уже два часа, а оказывается, что Вы не знаете, что такое противоположные события, и как связаны их вероятности.

Всё, больше ничего не комментирую, сказано уже более чем достаточно, изучайте материал и решайте до конца задачу.

Автор: leya 25.4.2011, 20:33

ну вот у нас есть событие А например то что (кси больше трех)
вероятность того что кси не больше трех будет равна 1- вероятность события А...




P(кси > 2) = 1-F(2)

Автор: malkolm 25.4.2011, 20:37

Теперь решайте, наконец, задачу. Самостоятельно.

Автор: leya 25.4.2011, 20:42

P(кси > 1/x)=1-F(1/x)

F(1/x) =

0,x<=0
C*1/x^3,x от 0 до 5
0,x>5

нет?

а дальше я просто хочу все это вычесть из 1...но видимо опять будет не так....

1,x<=0
1-C*1/x^3,x от 0 до 5
1,x>5

Автор: malkolm 25.4.2011, 21:04

Когда Вы решали неравенство {1/кси < x} как {кси > 1/x}, каким был x? Разве для отрицательного х так будет решаться неравенство?
Значит, х был положительным. С отрицательными х нужно разобраться заранее, и больше их не поминать. А именно:

Для х < 0: Что Вам известно про значения кси, исходя из её функции распределения или плотности? Используя эту информацию, ответьте: если x < 0, какова вероятность события {1/кси < x} для данной конкретной кси?

Для x > 0: Когда соберётесь подставлять 1/х вместо х в функцию распределения, обведите кружочком ВСЕ вхождения х в функцию распределения, и замените их ВСЕ на 1/х. Сейчас пока Вы куда-то подставили 1/х вместо х, а в остальные места - нет.

Автор: leya 26.4.2011, 8:09

Цитата(malkolm @ 25.4.2011, 21:04) *



Для х < 0: Что Вам известно про значения кси, исходя из её функции распределения или плотности? Используя эту информацию, ответьте: если x < 0, какова вероятность события {1/кси < x} для данной конкретной кси?



ну по логике если мы так ставим условие...то получается что 1\кси должна быть меньше 0...это возможно будет только при отрицательном кси....исходя из моей самой первой задачи...кси очень даже может быть отрицательной...


с другой стороны вероятность это определенный интеграл от плотности...
а плотность отрицательной быть не может(((....
функция распределения...она неубывающая...ее значения от 0 до 1....
про кси мне известно что она непрерывная...случайная величина(...

совсем с другой стороны 1/кси < x то же самое что 1\х<кси


но это все мысли вслух были....и никаких идей...

вот как бы единственная все та же мысль...но она тут уже была...
P(1\х<кси )=1-F(1\x)

F(1/x) =

0,1\x<=0
C*1/x^3, 1\х от 0 до 5
0,1\x>5

Автор: malkolm 26.4.2011, 11:02

Смотрим на свою плотность или функцию распределения и находим, какова P(кси < 0).

При x < 0 ничего в функцию распределения подставлять не нужно, при х < 0 нужно отдельно вычислить P(1/кси < x).

Вы понимаете, что 1/t < -3 решается НЕ как t > 1/(-3) ?

Автор: leya 26.4.2011, 15:18

P(кси < 0)=0...если я правильно поняла вопрос...


по моему не понимаю....и найти где про это подробно написано не могу...потому что это явно какая то мелочь которая итак интуитивно ясная(((

1/t < -3 решается как t>2/3 ?


Автор: malkolm 26.4.2011, 17:46

Цитата(leya @ 26.4.2011, 22:18) *

P(кси < 0)=0...если я правильно поняла вопрос...
по моему не понимаю....и найти где про это подробно написано не могу...потому что это явно какая то мелочь которая итак интуитивно ясная(((


Ну так если вероятность, с которой кси отрицательна, нулевая, то какова вероятность события {1/кси < x} при x < 0?

Цитата(leya @ 26.4.2011, 22:18) *

1/t < -3 решается как t>2/3 ?

t=7 проверяйте.

Автор: leya 26.4.2011, 18:07

для моей задачи...

0, х<0
c/x^2, при x>=1/5
1 при [0 1/5)

Автор: leya 26.4.2011, 18:46

Цитата(malkolm @ 26.4.2011, 17:46) *


t=7 проверяйте.


Из неравенства получили равенство?....тут опять математика обычная не работает?(


Автор: malkolm 26.4.2011, 21:15

Цитата(leya @ 27.4.2011, 1:07) *

для моей задачи...

0, х<0
c/x^2, при x>=1/5
1 при [0 1/5)

Что это? Напишите, что за функция равна указанным трём строчкам.

Цитата(leya @ 27.4.2011, 1:46) *

Из неравенства получили равенство?....тут опять математика обычная не работает?(


Знаете что, мне надоело! Вы решаете неравенства 1/t < -3, предлагаете в качестве "решения" t > 2/3 (интересно, это КАКАЯ МАТЕМАТИКА?), и не можете даже проверить Ваш ответ подстановкой какого-либо значения из указанного промежутка? Ещё раз: число 7 устраивает Вашему "ответу" t > 2/3. Проверяем,
1) больше ли 7 двух третей - т.е. подходит ли под Ваш ответ.
2) 1/7 меньше -3 или нет, т.е. является ли решением исходного неравенства.
3) делаем выводы, верно ли решено неравенство "1/t < -3" как "t > 2/3".

После этого попробуйте ПРАВИЛЬНО решить неравенство 1/t < -3.

Русская версия Invision Power Board (http://www.invisionboard.com)
© Invision Power Services (http://www.invisionpower.com)