Задание такое:написать формулу Тейлора третьего порядка в точке x0с остаточным членом в форме Пеано.f(x)=(e^(x-1))*ln(x)
x0=1
Получается следующее:
разложение для e^(x-1)=e^x*e^(-1)=e^(-1)*(1+x/1!+x^2/2!)=e^(-1)+x*e^(-1)+1/2*x^2*e^(-1)+o(x^3)
вот с разложением для ln(x) как то непонятно...
Вот разложение для ln(1+x)=x-x^2/2+x^3/3, а как написать для ln(x)?
и потом как я понимаю необходимо перемножить соответствующие элементы?или я неправильно понимаю, что очень вероятно.Запуталась.