ей воспользовавшись... у меня получился ответ 1081 (по модулю), на что преподаватель при проверке мне ответил что число по модулю больше 100 быть не может

решение по ней
А11=-55
А12=72
А13=-23
А14=-180
получилось это методом вычеркивания строки и столбца, пересекающихся на взятом элементе
и далее
4*(-55)+4*72+3*(-23)+6*(-180)=-220+288-69-1080=-1081
может надо было их решать методом дописывания элементов как в методе Крамера?
Приведение матрицы к треугольному виду, с этим методом, к сожалению, незнаком(
из найденного в сети я так понял что этот метод похож на метод Гаусса
Цитата
1. 4-я строка: в конце надо написать +6Е, где Е - единичная матрица соответствующего порядка.
т.е. будет
(1 6)*(1 1)
(6 1) (1 1)?
?
Цитата
3. Когда находили А^2, пееставили местами элементы а21 и а22 (вторая строка)
т.е. в примере должно было быть
8*5+3*3?
Цитата
Вы ранг находите не для определения значения переменной, а для выяснения совместна система или нет. Как вы определяете ранг? Что вы понимаете под этим понятием?
нет, вы не поняли, я имел ввиду, что в нижней строке остался только z, а ранг для этой расширенной матрицы я найти не смог
под рангом матрицы я понимаю наибольший порядок неравного 0 минора матрицы А - это из конспекта
т.к. у нас математику ведут два преподавателя, то объяснение "по простому" от них было разное, точнее вообще одно - ранг матрицы определяется по квадрату, который в матрице не имеет ни в одной строке/столбце нулей
например:
(1 1 1)
(2 2 2)
(3 3 0)
преподаватель объяснил что у этой матрицы ранг будет 2, т.е. 3 строка/столбец не учитываются в получающемся квадрате так как содержат элемент равный нулю,
не могли бы вы мне объяснить как на самом деле ранг искать?

Цитата
А вдруг Крамером неправильно сделали? Или там производили проверку?
метод Крамера сделан верно, так как единственный верно решенный пример во всей работе
подтверждено преподавателем...
Цитата
Когда приводили к ступенчатому виду, по-моему, неправильно вычислили элемент а23 (когда от второй строки отнимали 8 первых: -6-8*(-1)), аналогично с элементом а33. Аналогично и с элементом а34. Ну, соответственно, дальше неправильно. И не совсем поняла последние преобразования.
и правда... неправильно

значит там получается
(1 1 -1| 1) (1 1 -1| 1)
(0 -5 2|-6)~(0 -5 2|-6)
(0 -3 1|-1) (0 0 -1|13)
тогда
z=-13
y=(-6-26)/-5=-4
x=1+4-13=-8
хм... надо что то делать с невнимательностью...
Цитата
В чем запутались? Как составляли? Каким методом находили? Показывайте решение, посмотрим.
Ax=B
x=B/A=(1/A)*B=A^(-1)*B
(1 1 -1)
A^(-1)=1/detA (8 3 -6)
(4 1 -3)
A11=-15 A21=-4 A31=-9
A12=-48 A22=-7 A32=-14
A13=-4 A23=-3 A33=-5
detA=1, из метода Крамера
(-15 -4 -9) (1)
x=A^(-1)*B=1/1(-48 -7 -14)*(2)
(-4 -3 -5) (3)
дальше не успел, времени не хватило...
дома додумал но как то не очень
(-15 -4 -9) (1)
1*(-48 -7 -14)*(2)
(-4 -3 -5) (3)
непонятно что делать с единицей
если ее оставить, то получится
(-50)
1*(-104)
(-25)
какие то очень заоблачные цифры получились...