Доброго времени суток! Уравнение 3*x^2+6x-8y+6z-7=0. Привести к каноническому виду и указать тип поверхности.

Ход решения: 3*(х-1)^2-8у+6z-10=0, 3*x'^2+2*py+2*qz+r=0 (p=-4,q=3,r=10). Надо привести к виду x'^2=2*q'z ( уравнение параболического цилиндра).
Читала, что надо повернуть систему координат вокруг оси ОХ так, чтобы новая ось ординат стала параллельна плоскости 2*px+2qz+r=0. Не могу сообразить как это делается.

Подскажите, пожалуйста, как найти параметр q'.