Ну, во-первых, в примере, найденном в интернете, наверное, не было ограничений на непустоту карманов?
Во-вторых, число размещений без повторов из 3 по 2 это 3!/(3-2)! = 6, а не 9.

Почитайте вот этот вывод о числе способов разложить k неразличимых шариков по n ящикам: http://www.nsu.ru/mmf/tvims/chernova/tv/le...l#SECTION000216 (начиная со слов "есть n ящиков, в которых размещаются k шаров"). При таком размещении есть C(n+k-1; k)=C(n+k-1; n-1) вариантов размещения. Если мы хотим, чтобы все ящики были непусты, нужно по одному шарику положить в каждый ящик заранее, а остальные k-n шариков размещать как угодно. Тогда (меняем k на k-n в той же формуле) будет C(n+(k-n)-1; k-n) = C(n+(k-n)-1; n-1) вариантов разложить шарики так, чтобы все ящики были непусты.

Это число C(k-1; n-1) для наших k=10 и n=2 превратится в C(9;1)=9; для k=10, n=3 - в C(9;2)=36 и т.д.