Это более простая задача. Средние вообще считаются легче, чем распределения. Оценка метода моментов для Х пойдёт?

Пусть все элементы пронумерованы, в первом множестве шарики с номерами 1,...,K1-X,K1-X+1,...,K1, во втором - шарики с номерами K1-X+1,...,K1, K1+1,...,K1-X+K2. Здесь жирным выделены шары в количестве Х штук, общие для двух множеств.
И есть первый набор - X1,...,Xn со значениями 1,...,K1, и второй набор - Y1,...,Ym со значениями K1-X+1,...,K1-X+K2.

Найдём математическое ожидание числа совпадений Xi с Yj: величина I(Xi = Yj) принимает значения 1 или 0 в зависимости от того, случилось совпадение или нет, и имеет распределение Бернулли с параметром p=P(Xi = Yj)=P(X1=Y1)=P(X1=K1-X+1, Y1=K1-X+1)+...+P(X1=K1,Y1=K1) = X*1/K1*1/K2 = X/(K1*K2).

Тогда матожидание числа совпадений есть
E(sum[i,j] I(Xi = Yj)) = sum[i,j] E I(Xi = Yj) = sum[i,j] P(Xi = Yj) = n*m*X/(K1*K2).

Поэтому оценку метода моментов Х' для Х ищем, приравнивая полученное число совпадений k к его среднему: k=n*m*X'/(K1*K2), X' = k*K1*K2 / nm.

Это состоятельная, несмещённая, асимптотически нормальная оценка.