А про X(1) что-либо известно? Не похоже, чтобы предельное распределение от распределения X(1) не зависело.
Можно попробовать выписать производящую функцию величины X(n) через сумму производящих функций предыдущих величин с коэффициентами P{K(n)=k}, и выразить п.ф. X(n+1) через п.ф. X(n), а потом последовательно через п.ф. X(1). У меня получилось что-то вроде
п.ф. X(n+1) в точке z = п.ф. X(1) в точке z * Prod (k=1..n) (1- (1-z)/k^2).
Сомножители тут есть п.ф. бернуллиевсих с параметром 1/k^2 независимых слагаемых.
После перехода к пределу получается, что п.ф. предельного распределения есть п.ф. суммы X(1) и не зависящего от неё ряда из бернуллиевских независимых с.в. с параметрами 1/k^2, k=1,2,....
Что с этим можно сделать ещё, я не знаю.