2 пример:
Из условий вытекает, что М функции, вида f(t)=a*t+b, где |a|≤1, а b - любое число.
Ограниченность:
Множество будет являться ограниченным, если оно целиком будет лежать в некотором шаре. В данном случае множество функций М будет целиком лежать в шаре с радиусом r=b+2, так как в точке t=2, функция будет иметь вид f(2)=a*2+b, принимая за а его максимальное значение (а=1) получим f(2)=2+b, значит r=b+2. Выходит множество М ограничено. Или нет? Ведь b может принимать сколь угодно большое значение?
Замкнутость:
Мново функций М будет замкнутым, если выполняется условие |f(t)|≤K для любых f и t из [0,2], где K - число. Берем максимальное значение а (а=1) и вычисляем значение функции в точке 2: f(2)=2+b. Выходит, что выполняется условие f(t)≤b+2 для всех t. Здесь принимая K=b+2 следует вывод, что множество M - замкнуто. Но опять b может быть сколь угодно большим числом. Не нарушается ли условие при очень больших b?
Предкомпактность:
Этот вопрос тоже решается по теореме Арцела, но опять стоит тот же вопрос: что делать с b? Если b может принимать сколь угодно большие значения как в моем случае, может ли считаться, что М - ограничено, замкнуто, предкомпактно? Скажите, пожалуйста, если не сложно.