Помогите пожалуйста
Нужно срочно решить задачи:
1. Найти собственные числа и собственные векторы оператора А, ставящего каждой функции f⋲M в соответствие функцию (Af)(t)=f''(t), где М есть подпространство линейного пространства С2[-1,3]: f(-1)=f(3)=0
2. Является ли множество функций М открытым, замкнутым, ограниченным, предкомпактным в С∞[0,2]:
М - множество функций f(t), имеющих непрерывную производную на [0,2], так, что |f'(t)|≤1 для всех t⋲[0,2].
3. Найти базис в подпространстве L1⋂L2, где L1 и L2 подпространства многочленов третьей степени, удовлетворяющих условиям:
L1:p'(0)=p'(1)
L2:Lоб(1+2t,2+2t-t^2,2+3t-t^2)