Цитата(venja @ 11.4.2009, 9:02) *

Проверьте, давно не решал таких задач, да может и в преобразованиях ошибся.
Равномерная сходимость ряда по определению есть равном. сх-ть част. сумм.
Если я не ошибся, то получается так.
Sn(x) =
x*(x^n-1)*(x^(n+1)-1)/(1-x^2) при х из [0,1)
0 при х=1
Переходя к пределу, получим
S(x)=
x/(1-x^2) при х из [0,1)
0 при х=1

При этом видно, что S(х) разрывна в 1 (в отличие от Sn(x)).
Отсутствие равномерной сходимости ряда на ОТРЕЗКЕ [0,1] можно
доказать от противного. Если бы ряд сходился равномерно (а ряд состоит из непрерывных на [0,1] функций), то по соответствующей теореме (если я правильно вспоминаю) его сумма должна быть непрерывной на [0,1] - противоречие.
Проверьте.


Да, есть такая теорема и на паре мы доказывали по этой теореме и аналитически с epsilon этим ужасным. У вас отличнейшая память! =) я эти теоремы благополучно забываю после коллка или экзамена. Сдам задачу по этой теореме... Если вернет и попросит аналитически - придется искать Epsilon. И еще не слишком очевидно что Sn(x) непрерывные. Я нарисовала) Как аналитически док-ть, что непрерывные на [0,1]? Спасибо за помощь!