А обязательно именно такой логарифм должен получится?
int(dx/(1-x^2))=(1/2)*ln((1-x)/(1+x))+C
1) int[sqrt(x)dx/(4-x)] = |x=t^2| = int[2t^2dt/(4-t^2)] = int[-2+8/(4-t^2)dt] = -2t+4ln(4-t^2)| верхн. пр. =1;нижн. пр. = 0;после замены t1 = sqrt(1) = 1; t2 = sqrt(0) = 0| = -2+4ln3-4ln4.
теперь правильно?
Получается к переменной х потом не надо переходить?
2) int[dx/(5-sqrt^3(x^2))] = |x=t^3| = int[3t^2 dt/(5-t^2) = int[-3+15/(5-t^2)dt] = -3t+(15/2)ln(5-t^2)|верхн пр. = 0; нижн. пр. = -8; после замены t1 = sqrt^3(x) = sqrt^3(0) = 0; t2 = -2| = (15/2)ln5-6.
3) int[sqrt(x+2)dx/x), а в этом подскажите плиз какую сделать замену?