Доброго всем времени суток! Форумчане,помогите решить,плз. Найти радиус сходимости ряда от n= -∞ до +∞:

∑ (x^n)/(2*n^2). Обратите внимание, что пределы суммирования от -∞ до +∞.

В задании ничего не сказано про n=0, но я так полагаю, кроме n=0. Начал решать так: сначала разбил на два ряда, каждый от n=1 до +∞, затем объединил в один. Получилось так:

∑ (x^n)/(2*n^2) +∑ (x^(-n))/(2*n^2) = ∑ [x^n + x^(-n)]/(2*n^2). При нахождении R по Даламберу получил целое неравенство степени 2n. Чо с ним делать, ума не приложу. Может чего посоветуете?

Всем спасиб.