Думаю, можно так это доказать.
Без ограничения общности можно считать, что все члены последовательности различны (любой другой случай можно легко свести к этому).
Последовательность а(1), а(2), ....
За первый член выбираемой монотонной подпоследовательности берем а(1). Далее, в одном из множеств (-00, а(1)) или (а(1),+00) содержится бесконечное число членов исходной последовательности. Допустим, это первый интервал. Тогда будем строить монотонно убывающую подпоследовательность. Пусть к1 - наименьший номер, такой, что а(к1) содержится в (-00, а(1)) . Тогда а(к1) возьмеи за второй член строю(я?)щейся подпоследовательности. Теперь рассмотрим множество (-00, а(к1)). В нем опять бесконечно много членов исходной последовательности с номерами, большими к1. Поймите, почему. Пусть к2 - наименьший номер, такой, что а(к2) содержится в (-00, а(к1)) . Тогда а(к2) возьмеи за третий член строю(я?)щейся последовательности. И т.д.