Цитата
Распишите, как счситали вот эту производную по х: (-x^2+y^2)/2)'?
Ux=(-x^2+y^2)/2)'={по формуле производных (U/V)'=(U'+V-U+V')/V^2}=[(-x^2+y^2)'*2-2'(-x^2+y^2)]/2^2=[(-x^2+2y)*2-0*(-x^2+y^2)]/4=(-2x^2+4y)/4=(-x^2+2y)/2
Цитата
Аналогично:(-x^2+y^2)/2)' по у?
Uy=(-x^2+y^2)/2)'=[(-x^2+y^2)'*2-2'(-x^2+y^2)]/2^2=[(-2x+y^2)*2-0*(-x^2+y^2)]/4=(-4x+2y^2)/4=(-2x+y^2)/2
Цитата
Чему равна производная(e^(-x^2+y^2)/2)' по z?
Uz=(e^(-x^2+y^2)/2)'=e^((-x^2+y^2)/2)*((-x^2+y^2)/2)'=e^((-x^2+y^2)/2)*{по формуле (e^u)'=e^u*u'}*((-x^2+y^2)/2)