Цитата(venja @ 1.2.2009, 2:31) *

Согласен-то я согласен, да опять возникают забавные мысли. Старая проблема. Все зависит от того, как понимать условие задачи:
Что это значит? Не прописан механизм эксперимента, а потому толкование слова "наудачу" может быть разным (соответственно, с разными ответами!). По Вашему толкованию "наудачу" означает, что вероятность точке попасть в область внутри круга пропорциональна только площади области.

Нет, это не "по-моему". Это согласно геометрическому определению вероятности и стандартной, со времён после парадоксов Бертрана, трактовке термина "наудачу": говорят, что точка наудачу выбирается в (измеримой) области Ω, если вероятность ей попасть в любое измеримое подмножество А области Ω зависит лишь от меры А (и поэтому пропорциональна ей).

Как только "наудачу" понимается иначе, или когда речь идёт о бросании "наудачу" в область более крупного объекта, чем точка, вот тогда условия эксперимента следует определять особо.

Цитата(Juliya @ 1.2.2009, 2:37) *

to malkolm Абсолютно с Вами согласна... И, имея техническое образование и являясь кандидатом технических наук, волею судеб преподаю в экономическом ВУЗе... и чем дальше, тем больше понимаю и разочаровываюсь в уровне математической подготовки нынешних студентов..

Коллеги smile.gif Тоже всю жизнь работаю с экономистами. Кстати говоря, один наш профессор как-то говорил о том, что пришёл к мысли совершенно обходиться без функций распределения в учебном курсе для нематематиков: только таблица распределения/плотность расределения. Это вещи более понятные - их можно интерпретировать как "вероятностную массу, размазанную по оси". Конечно, вероятности вида P(X < x) при этом считать придётся - хотя бы для того, чтобы преобразовывать распределения, но специально их называть и изучать отдельно их свойства вроде как ни для чего и не нужно, так что без термина "функция распределения" вполне можно обойтись. Мысль мне не до конца ясная, но что-то в ней есть.