Помощь
-
Поиск
-
Пользователи
-
Календарь
Полная версия:
y=ln(1+y'^2), x=y'sqrt(y'^2+1) ( Сообщение # 27265 by Dimka ) > Дифференциальные уравнения
Образовательный студенческий форум
>
Высшая математика
>
Дифференциальные уравнения
Dimka
24.1.2009, 19:33
y'^4+y'^2-x^2=0
y'^2=p
Получаете квадратное уравнение
p^2+p-x^2=0
решаете его
p1,2=-1/2 +- [sqrt(1+4x^2)]/2
y'^2=-1/2 +- [sqrt(1+4x^2)]/2
y'=+- sqrt(-1/2 +- [sqrt(1+4x^2)]/2)
dy=+- sqrt(-1/2 +- [sqrt(1+4x^2)]/2) dx
дальше интегрируйте
Это текстовая версия — только основной контент. Для просмотра полной версии этой страницы, пожалуйста,
нажмите сюда
.
Русская версия Invision Power Board © 2001-2025
Invision Power Services, Inc.