Скажите пожалуйста, являются ли элементы вектора ПИ, который является стационарным распределением, собственными значениями матрицы переходных состояний. У меня не очень получается решить, так как Вы сказали, и поэтому я решил попробовать другим методом. Исходя из того, что по сути я написал в вопросе ищем собственные значения матрицы Р, получаем уравнение 3 степени относительно лямбда и приравниваем его к 0. А вот дальше можно сказать, что якобы требуемое условие выполняется и обозначить равные элементы например за а и в, но в итоге получил уравнение 2-й степени (воспользовавшись свойством а=(1-в)), но это уравнение не имеет корней, т.к. дискриминант меньше 0. Поэтому я прошу Вас подтвердить или опровергнуть мое предположение относительно элементов вектора ПИ и собств значениями матрицы.