Знак предела везде опущен (сами допишете)

={[(2x-1)^2][e^sin3*Pi*x]}/[ e^(sinPi*x +sin3*Pi*x) -1 ]

т.к. e^t ~ 1+t, то e^t -1~ t тогда

{[(2x-1)^2][e^sin3*Pi*x]}/[ e^(sinPi*x +sin3*Pi*x) -1 ] ~ {[(2x-1)^2][e^sin3*Pi*x]}/[ sinPi*x +sin3*Pi*x ] = {[(2x-1)^2][e^sin3*Pi*x]}/[ 2sin 2*Pi*x cos Pi*x ] = {[(2x-1)^2][e^sin3*Pi*x]}/[ 2sin (Pi-2*Pi*x) sin (Pi/2-Pi*x) ] ~ {[(2x-1)^2][e^sin3*Pi*x]}/[ 2 (Pi-2*Pi*x)*(Pi/2-Pi*x) ]={[(1-2x)^2][e^sin3*Pi*x]}/[ Pi^2 (1-2x)*(1-2x) ]={e^sin3*Pi*x}/[ Pi^2] =1/[e*Pi^2]